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AdaptDL

AdaptDL is a resource-adaptive deep learning (DL) training and scheduling framework, and is part of the CASL open
source project. The goal of AdaptDL is to make distributed DL easy and efficient in dynamic-resource environments
such as shared clusters and the cloud.

AdaptDL consists of two components which can be used together with or separately from one another:

• adaptdl-sched: A cluster scheduler on Kubernetes optimized for distributed deep learning training.

• adaptdl: A library for adaptive batch sizes that can efficiently scale distributed training to many nodes.

Some core features offered by AdaptDL are:

• Elastically schedule distributed DL training jobs in shared clusters.

• Cost-aware resource auto-scaling in cloud computing environments (e.g. AWS).

• Automatic batch size and learning rate scaling for distributed training.

AdaptDL supports PyTorch training programs. TensorFlow support coming soon!
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CHAPTER

ONE

WHY ADAPTDL?

1.1 Efficient Resource Management

The AdaptDL scheduler directly optimizes cluster-wide training performance and resource utilization, by using a ge-
netic algorithm to periodically optimize resource allocations for all jobs. Through elastic re-scaling, co-adapting batch
sizes and learning rates, and avoiding network interference, AdaptDL significantly accelerates shared-cluster training
when compared with alternative schedulers. For details, please see our OSDI’21 research paper.

In the cloud (e.g. AWS), AdaptDL auto-scales the size of the cluster based on how well those cluster resources are
utilized. AdaptDL automatically provisions spot instances when available to reduce cost by up to 80%.
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1.2 Adaptive Batch Size Scaling

Efficient distributed training requires careful selection of the batch size and learning rate, which can be tricky to find
manually. AdaptDL offers automatic batch size and learning rate scaling, which enables efficient distributed training
without requiring manual effort. To achieve this, AdaptDL measures the system performance and gradient noise scale
during training, adaptively selects the most efficient batch size, and scales the learning rate using AdaScale.

1.3 Easy-to-use Elastic API

Making training programs run elastically can be challenging and error-prone. AdaptDL offers APIs which make it easy
to enable elasticity for data-parallel PyTorch programs. Simply change a few lines of code, without heavy refactoring!

BEFORE:

torch.distributed.init_process_group("nccl")
model = torch.nn.parallel.DistributedDataParallel(model)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=128)
for epoch in range(100):

...

AFTER:

adaptdl.torch.init_process_group("nccl")
model = adaptdl.torch.AdaptiveDataParallel(model, optimizer)
dataloader = adaptdl.torch.AdaptiveDataLoader(dataset, batch_size=128)
for epoch in adaptdl.torch.remaining_epochs_until(100):

...
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CHAPTER

TWO

GETTING STARTED

AdaptDL consists of a job scheduler and an adaptive training library. They can be used in multiple ways:

1. Scheduling multiple training jobs on a shared Kubernetes cluster or the cloud (Scheduler Installation).

2. Adapting the batch size and learning rate for a single training job (Standalone Training).

3. As a Ray Tune Trial Scheduler (Tune Trial Scheduler).

4. As a single training job running on a Ray AWS cluster (Ray AWS Launcher)

2.1 Installation

The following pages describe how to deploy the AdaptDL scheduler to manage jobs in a shared Kubernetes cluster. If
you are interested in training in a standalone setting, see Standalone Training.

2.1.1 Deploying MicroK8s for AdaptDL

This page describes how to deploy a single-node MicroK8s Kubernetes instance on which AdaptDL can be run. Refer
to other pages if you want to run AdaptDL on an existing Kubernetes cluster, or on an auto-scaling cluster with EKS.

Note: The instructions on this page assume Ubuntu 18.04 or above with sudo access.

Installing MicroK8s

First, install MicroK8s using Snap:

$ sudo snap install microk8s --classic --channel=1.18/stable

The above command should install a barebones MicroK8s instance locally. Next, enable dns:

$ sudo microk8s enable dns

Enable gpu and storage:

$ sudo microk8s enable gpu storage

The above command enables pods to utilize GPUs if available, and allows local storage to be used for AdaptDL training
checkpoints.

Initialize Helm, which is a package manager that can later be used to deploy the AdaptDL scheduler:

5
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$ sudo microk8s enable helm
$ sudo microk8s helm init --stable-repo-url=https://charts.helm.sh/stable
$ sudo helm repo add stable https://charts.helm.sh/stable

Interacting with MicroK8s

Once MicroK8s is installed, you can interact with it via microk8s.kubectl, in the same way as using kubectl to
interact with other Kubernetes instances:

$ sudo microk8s.kubectl get nodes

Example output:

NAME STATUS ROLES AGE VERSION
gpu00100 Ready <none> 10m v1.18.8

If you prefer to omit sudo, add your user to the microk8s group, and then re-login to your shell:

$ sudo usermod -a -G microk8s $USER

If you prefer to use kubectl rather than microk8s.kubectl:

$ mkdir -p $HOME/.kube
$ sudo microk8s kubectl config view --raw > $HOME/.kube/config
$ sudo chown -f -R $USER ~/.kube

The above step is recommended when later deploying AdaptDL onto MicroK8s.

Next Steps

Once your MicroK8s instance is installed and running, you can deploy the AdaptDL scheduler.

2.1.2 Provisioning EKS for AdaptDL

This page describes how to setup an AWS EKS cluster that auto-scales according to cluster load. Refer to other pages
if you want to run AdaptDL on an existing Kubernetes cluster, or on an a single node with MicroK8s.

Note: The instruction on this page assume eksctl, kubectl, helm and awscli are installed locally. You can follow
this guide to install all the tools needed.

Attention: This guide will provision AWS resources which will cost money. As of August 2020, you pay $0.10
per hour for each Amazon EKS cluster that you create. $0.30 GB-Month for the EFS storage and $0.526 per hour
per g4dn.xlarge instance that you will end up using, starting with one. Note because the cluster is auto-scaling,
additional instances will be spawned only when needed and you will be charged only for the duration of their
lifetimes.

6 Chapter 2. Getting Started
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Provisioning the Cluster

You may use the provided manifest to create the cluster. Some configurations may be changed as per your preferences
by downloading and modifying the file.

eksctl create cluster -f https://raw.githubusercontent.com/petuum/adaptdl/master/deploy/
→˓eks/adaptdl-eks-cluster-on-demand.yaml

This will provision an elastic EKS cluster with name adaptdl-eks-cluster with 1 minimum and 4 maximum
nodes in the us-west-2 region. All nodes are on-demand g4dn.xlarge instances with a single GPU each. You can
change the instance type and auto-scaling limits by changing nodeGroups.instanceType, nodeGroups.minSize,
and nodeGroups.maxSize, respectively. You can also change the cluster name, AWS region of your choice.

Make sure the CLUSTER_NAME and AWS_REGION environment variables reflect the correct values after this step, for
example:

export CLUSTER_NAME=adaptdl-eks-cluster
export AWS_REGION=us-west-2

Provisioning EFS

AdaptDL depends on a distributed filesystem like EFS to save and load checkpoints during training. You may follow
the instructions from this website to provision an EFS volume for your cluster.

Next, install the EFS provisioner Helm chart. Make sure you have set the FILE_SYSTEM_ID environment variable
according to the linked instructions.

helm repo add stable https://kubernetes-charts.storage.googleapis.com/

helm repo update

helm install stable/efs-provisioner \
--set efsProvisioner.efsFileSystemId=$FILE_SYSTEM_ID \
--set efsProvisioner.awsRegion=$AWS_REGION \
--generate-name

Installing the Cluster Autoscaler

helm repo add autoscaler https://kubernetes.github.io/autoscaler

helm repo update

helm install autoscaler/cluster-autoscaler-chart \
--set autoDiscovery.clusterName=$CLUSTER_NAME \
--set awsRegion=$AWS_REGION \
--generate-name

To verify that cluster-autoscaler has started, run:

kubectl --namespace=default get pods -l "app.kubernetes.io/name=aws-cluster-autoscaler-
→˓chart"

Should show the Cluster Autoscaler pod as Running

2.1. Installation 7
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Installing the NVIDIA Plugin

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.6.0/
→˓nvidia-device-plugin.yml

(Optional) Registry Access

If you will be using AdaptDL’s insecure registry, you will need to add a new rule to the security group associated with
the nodes of the cluster. You may need help from your AWS administrator to perform this step.

SECURITY_GROUP=$(aws cloudformation describe-stack-resources --stack-name \
eksctl-$CLUSTER_NAME-nodegroup-ng-1 --query \
'StackResources[?LogicalResourceId == `SG`].[PhysicalResourceId]' --output text)

aws ec2 authorize-security-group-ingress --group-id $SECURITY_GROUP \
--protocol tcp --port 32000 --cidr 0.0.0.0/0

Cleaning Up

Once you are done with the cluster, you can clean up all AWS resources with:

eksctl delete cluster --name $CLUSTER_NAME

for target in `aws efs describe-mount-targets --file-system-id $FILE_SYSTEM_ID --query
→˓'MountTargets[].MountTargetId' --output text`; \
do aws efs delete-mount-target --mount-target-id $target; done

aws efs delete-file-system --file-system-id $FILE_SYSTEM_ID

Next Steps

Once your EKS cluster is provisioned and running, you can deploy the AdaptDL scheduler.

2.1.3 Installing the AdaptDL Scheduler

This page shows how to install the AdaptDL scheduler on an existing Kubernetes instance. If you do not have a running
Kubernetes instance, you may refer to other pages to deploy a single-node MicroK8s instance, or to provision an auto-
scaling cluster on EKS.

Note: The following instructions assume kubectl (installation instructions) and helm (installation instructions) are
installed locally and configured with administrator access to an existing Kubernetes instance.
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Install the AdaptDL Helm Chart

The AdaptDL scheduler can be installed in just one command using Helm:

$ helm install adaptdl adaptdl-sched --repo https://github.com/petuum/adaptdl/raw/helm-
→˓repo \
--namespace adaptdl --create-namespace --set docker-registry.enabled=true

The above command installs Kubernetes deployments for the AdaptDL scheduler service, as well as a Docker registry.
The Docker registry is used to store intermediate Docker images when submitting jobs with the AdaptDL CLI.

Danger: The Docker registry installed with the AdaptDL scheduler is insecure. Please install an alternative secure
registry for serious use! The included Docker registry may be disabled by omitting the --set docker-registry.
enabled=true option, and then the AdaptDL CLI may be configured to use the alternative secure registry.

Note: If installing AdaptDL together with the insecure registry, you may need to first install the Helm stable repository
with the helm repo add stable https://charts.helm.sh/stable command.

Check that the AdaptDL scheduler and Docker registry are running:

$ kubectl get pods -n adaptdl

Example output:

adaptdl-adaptdl-sched-7d8b689f45-9ds8h 3/3 Running 0 2m37s
adaptdl-registry-7f45598964-t8df6 1/1 Running 0 2m37s

Next Steps

Once the AdaptDL scheduler is installed and running, you may run AdaptDL jobs using the AdaptDL CLI .

2.2 AdaptDL Command-line Interface

The following pages describe how to use AdaptDL CLI to submit and manage jobs in an AdaptDL-scheduled cluster.
If you are instead interested in training in a standalone setting, see Standalone Training.

Note: The following instructions assume you have already installed the AdaptDL scheduler on Kubernetes. If you
have not, see Installation.

2.2. AdaptDL Command-line Interface 9
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2.2.1 Submitting a Simple Job

This page is an introduction to running AdaptDL jobs using a simple “Hello, world!” program. The goal is to show the
basics of creating and interacting with AdaptDL jobs. For an introduction to modifying existing PyTorch code to use
AdaptDL, please see AdaptDL with PyTorch.

Installation

python3 -m pip install adaptdl-cli

Writing a Simple Program

For the purpose of this guide, you will want a simple python script that produces output to adaptdl.env.
share_path(), the directory used for your job for storing general files.

For example, you may copy the following code (into hello_world/hello_world.py):

import adaptdl.env
import os
import time

print("Hello, world!")

with open(os.path.join(adaptdl.env.share_path(), "foo.txt"), "w") as f:
f.write("Hello, world!")

time.sleep(100)

Please note that stdout is only accessible while a job is still running. Therefore, the time.sleep(100) call is important
for this tutorial.

Writing a Dockerfile

In order to run your application code, the job containers need access to the code directly. A simple method is to create
a docker image containing the application.

Currently the adaptdl cli requires you to be able to push to and the cluster to be able to pull from a docker registry. This
may be dockerhub, or it may be your own private docker registry. Please ensure that that is set up before proceeding.

Copy the following docker file into hello_world/Dockerfile:

FROM python:3.7-slim
RUN python3 -m pip install adaptdl

COPY hello_world.py /root/hello_world.py

ENV PYTHONUNBUFFERED=true

Tip: If the Dockerfile is not written carefully, the Docker build step can take a long time. Make sure to follow the best
practices when writing your Dockerfile so your builds are as fast as possible:

1. Exploiting caching in Dockerfile to re-use layers and speed up builds

10 Chapter 2. Getting Started
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2. Using .dockerignore to minimize the size of your docker context.

In particular, you should (almost) always have a .dockerignore file that contains .git and other large files/directories
which are not used in your containers.

Configuring the Job

AdaptDL jobs are specified as Kuberenetes Resource. The following yaml file defines the job specification for your
hello world application:

Example (in hello_world/adaptdljob.yaml):

apiVersion: adaptdl.petuum.com/v1
kind: AdaptDLJob
metadata:
generateName: hello-world-

spec:
template:
spec:
containers:
- name: main
command:
- python3
- /root/hello_world.py

Submitting the Job

Run the following AdaptDL cli command from your client.

adaptdl submit hello_world

Note: If you are using Docker for Mac with AdaptDL’s built-in insecure registry, the first run of adaptdl submit
may fail with an error similar to:

Get https://host.docker.internal:59283/v2/: x509: certificate signed by unknown authority

You may need to restart Docker, and adaptdl submit should work thereafer.

This will create the AdaptDL Kubernetes job object for your application. Once this is created, the AdaptDL sched-
uler will recognize the job and schedule it for execution. Please note that for this command to work, the docker
file created in step 3 must be located in hello_world/Dockerfile and the yaml created in step 4 must be located in
hello_world/adaptdljob.yaml.

2.2. AdaptDL Command-line Interface 11
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Monitoring the Job

Once the job object has been created, you can find more information about the job using

adaptdl ls

This should produce some output similar to

Name Status Start(UTC) ␣
→˓ Runtime Rplc Rtrt
hello-world-kgjsc Running Aug-24 18:47␣
→˓ 1 min 1 0

Once the Status is listed as Running and not Pending, then the AdaptDL scheduler has created pods for your AdaptDL
job. Use the following command to find out more details about the pods:

kubectl get pods

This should produce an output that looks like

NAME READY STATUS RESTARTS␣
→˓ AGE
adaptdl-adaptdl-sched-856cc685c4-hhdks 3/3 Running 0 ␣
→˓ 8h
hello-world-kgjsc-a7fe6b49-e673-11ea-a27e-061e69fb5c39-0-0 1/1 Running 0 ␣
→˓ 20s

Note that this gets all of the pods in the default namespace, including the scheduler. To restrict this to just the pods
created for your job, use kubectl get pods | grep hello-world.

When the phase is listed as Running, as opposed to ContainerCreating, then you can get the stdout and stderr logs
via the following, (replacing <pod-name> with the name value you got from kubectl get pods):

kubectl logs <pod-name>

This should produce output of Hello, world!.

Please note that this method of getting stdout and stderr output requires the pod to still exist. However, when an
AdaptDL job finishes or rescales, the worker pods are deleted. For more durable logging, it is advised to write to a file.

Retrieving Output Files

Use the following to copy result files to your client machine. Please replace <adaptdl-job> with the name value from
the output of adaptdl ls in step 10:

adaptdl cp <adaptdl-job>:/adaptdl/share/foo.txt foo.txt

foo.txt on your local client should then contain hello world

12 Chapter 2. Getting Started
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Deleting the Job

Delete the job with kubectl: kubectl delete adaptdljob <adaptdl-job>. Again, replace the name parameter
with the one from before. This will delete the AdaptDL kubernetes object from your job, which will also delete any
running pods or other attached resources. Please note that this may cause files the job has written to to no longer be
available.

(Advanced) External Registry

If possible, we recommend using a secure external Docker registry instead of the default insecure registry installed
along with the AdaptDL scheduler. To do this, you’ll need to export two environment variables to let AdaptDL know
the full reponame to use, say registry.example.com/adaptdl-submit, along with registry credentials mysecret.
Refer to this website for how to create one.

export ADAPTDL_SUBMIT_REPO=registry.example.com/adaptdl-submit
export ADAPTDL_SUBMIT_REPO_CREDS=mysecret

Then do docker login in with the registry credentials.

2.2.2 Integrating your AdaptDL job with TensorBoard

Tensorboard provides a simple way to collect and visualize model performance, statistics, and weights. AdaptDL
provides integration with tensorboard across replicas via AdaptDL’s command line interface.

AdaptDL provides a way to deploy a Tensorboard instance on your kubernetes cluster that your AdaptDL jobs can
interact with. This tutorial demonstrates how to have your AdaptDL jobs write to Tensorboard and how to access the
Tensorboard UI.

Modifying Your Code

The AdaptDL CLI provides the environment variable ADAPTDL_TENSORBOARD_LOGDIR as the log directory for
AdaptDL TensorBoard deployments. Use $ADAPTDL_TENSORBOARD_LOGDIR/<job-name> for the particular job you
are running via the following code:

os.path.join(os.getenv("ADAPTDL_TENSORBOARD_LOGDIR"),
adaptdl.env.job_id())

Following AdaptDL with PyTorch, the following changes are made to the test function to write to tensorboard:

with stats.synchronized():
test_loss = stats["test_loss"] / len(test_loader.dataset)
correct = stats["correct"]
tensorboard_dir = os.path.join(os.getenv("ADAPTDL_TENSORBOARD_LOGDIR", "/tmp"),

adaptdl.env.job_id())
with SummaryWriter(tensorboard_dir) as writer:

writer.add_scalar("Test/Loss", test_loss, epoch)
writer.add_scalar("Test/Accuracy", 100. * correct / len(test_loader.dataset),␣

→˓epoch)

See mnist_tensorboard.py for more context.

2.2. AdaptDL Command-line Interface 13
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Deploying Tensorboard

Launch the AdaptDL TensorBoard deployment with

adaptdl tensorboard create my-tensorboard

This will create a deployment running tensorboard and a service to expose tensorboard’s port.

Attaching TensorBoard

When creating your AdaptDL job via the adaptdl cli, use the flag --tensorboard my-tensorboard. This will attach
the necessary persistent volume claims and environment variables to your AdaptDL job.

For example, to launch the Tensorboard MNIST example from above, run the following in your command line.

adaptdl submit . --tensorboard my-tensorboard -d tutorial/Dockerfile -f tutorial/
→˓adaptdljob.yaml

Accessing TensorBoard

To access the GUI of your TensorBoard instance running in Kubernetes, you can start a proxy to it locally:

$ adaptdl tensorboard proxy my-tensorboard -p 8080
Proxying to TensorBoard instance my-tensorboard at http://localhost:8080

The proxy will keep running until you manually stop it by sending an interrupt. Now, you can view your TensorBoard
instance by pointing your favorite browser to http://localhost:8080.

2.3 AdaptDL with PyTorch

This page describes the steps needed to modify a simple MNIST example to use AdaptDL. Please see
mnist_original.py for the original version and tutorial/mnist_step_<#>.py for the resulting changes from
each step number of this tutorial.``diff`` may be useful here to compare versions.

2.3.1 Initializing AdaptDL

Once the training model model with optimizer optimizer and (optional) learning rate scheduler scheduler have
been created, register all three with the following commands:

adaptdl.torch.init_process_group("nccl" if torch.cuda.is_available()
else "gloo")

model = adaptdl.torch.AdaptiveDataParallel(model, optimizer, scheduler)

Please note that init_process_group must be called before the AdaptiveDataParallel object is created

In the MNIST tutorial example (mnist_step_1.py), the changes will look like the following:

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
(continues on next page)
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(continued from previous page)

adaptdl.torch.init_process_group("nccl" if torch.cuda.is_available()
else "gloo") # Changed

model = adaptdl.torch.AdaptiveDataParallel(model, optimizer, scheduler) # Changed

2.3.2 Dataloading

AdaptDL requires you to use adaptdl.torch.AdaptiveDataLoader. This will require you to first have your dataset
as a torch dataset object. From there, the AdaptiveDataLoader supports the same arguments as the standard PyTorch
DataLoader class. Furthermore, the batchsize is not guaranteed to be the same as the batch_size argument. However,
if batchsize autoscaling is not enabled (see part 3), then the global batchsize will be very close that provided via
batch_size.

In the MNIST example (mnist_step_2.py), this is a matter of changing the dataloaders from

dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)

dataset2 = datasets.MNIST('../data', train=False,
transform=transform)

train_loader = torch.utils.data.DataLoader(dataset1, batch_size=64,
num_workers=1, shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset2, batch_size=64,
num_workers=1, shuffle=True)

to

dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)

dataset2 = datasets.MNIST('../data', train=False,
transform=transform)

train_loader = adaptdl.torch.AdaptiveDataLoader(dataset1, drop_last=True, batch_size=64,
num_workers=1, shuffle=True)

test_loader = adaptdl.torch.AdaptiveDataLoader(dataset2, batch_size=64,
num_workers=1, shuffle=True)

Setting drop_last=True allows the dataloader to properly deal with remainders when dividing the dataset by the
number of replicas

2.3.3 Adaptive Batch Size

Enable AdaptDL to automatically scale the batch size based off of throughput and gradient statistics via

data_loader.autoscale_batch_size(
max_global_batchsize,
local_bsz_bounds=(min_local_batchsize, max_local_batchsize))

Note: this will allow the batchsize to change dynamically in training via Adascale. Also note that this will generally
require your optimizer to be SGD.

In the context of the MNIST example (mnist_step_3.py), the following change will need to be made:

2.3. AdaptDL with PyTorch 15

https://pytorch.org/docs/stable/data.html#dataset-types
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader


AdaptDL

train_loader = adaptdl.torch.AdaptiveDataLoader(dataset1, drop_last=True, **kwargs)
test_loader = adaptdl.torch.AdaptiveDataLoader(dataset2, **kwargs)

train_loader.autoscale_batch_size(1028, local_bsz_bounds=(32, 128))

Please note that this call is optional, but required to allow the global batchsize to change dynamically over time.

2.3.4 Training Loop

The core training loop requires the following change from:

for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()

to

for epoch in adaptdl.torch.remaining_epochs_until(args.epochs): # Changed
train(args, model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()

The call adaptdl.torch.remaning_epochs_until(args.epochs)will resume the epochs and batches progressed
when resuming from checkpoint after a job has been rescaled. See (mnist_step_4.py).

2.3.5 Statistics Accumulation

To calculate useful metrics like loss or accuracy across replicas, use the adaptdl.torch.Accumulator class, which
is a dict-like object that sums across replicas when synchronized is called. However, outside of the stats.
synchronized() context, get operations are not supported. Furthermore, calling stats.synchronized() forces
blocking for synchronization across all replicas.

Whereas before collecting test data would look like:

def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():

for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
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With AdaptDL statistics accumulation, it would look like:

def test(model, device, test_loader):
model.eval()
stats = adaptdl.torch.Accumulator() # Changed in step 5
with torch.no_grad():

for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# CHANGED:
stats["test_loss"] += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
stats["correct"] += pred.eq(target.view_as(pred)).sum().item()

with stats.synchronized(): # Changed in step 5
test_loss = stats["test_loss"] / len(test_loader.dataset) # Changed
correct = stats["correct"] # Changed in step 5

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

See (mnist_step_5.py) for the full changes.

2.4 Standalone Training

This tutorial shows how to run AdaptDL training code in a standalone setting, outside of an AdaptDL-scheduled cluster.
Standalone training has no dependency on deploying Kubernetes or the AdaptDL scheduler. It can be useful for:

1. Distributed training with adaptive batch sizes in a dedicated cluster.

2. Local testing the training code before submitting to an AdaptDL cluster.

2.4.1 Local Training

Any training code that uses AdaptDL APIs can be run locally as a single process. All that’s needed is to install the
adaptdl package, and run the code as a regular python program.

$ python3 -m pip install adaptdl

As an example, we shall run the simple MNIST training script (mnist_step_5.py).

$ python3 mnist.py

Output:

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 36405
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:39345?rank=0&world_
→˓size=1
INFO:adaptdl.torch:torch.distributed initialized

(continues on next page)
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(continued from previous page)

INFO:adaptdl.torch.epoch:starting at epoch 0
Train Epoch: 0 [0/60000 (0%)] Loss: 2.318445
Train Epoch: 0 [640/60000 (1%)] Loss: 1.647522
...
...
...
Train Epoch: 13 [58880/60000 (98%)] Loss: 0.003577
Train Epoch: 13 [59520/60000 (99%)] Loss: 0.034688

Test set: Average loss: 0.0267, Accuracy: 9911/10000 (99%)

2.4.2 Manual Checkpoint-Restart

When a training program is running locally, a checkpoint can be triggered by sending an interrupt (CTRL-C in most
terminals). The environment variable ADAPTDL_CHECKPOINT_PATH specifies where the checkpoint should be located.

$ mkdir mnist-checkpoint
$ ADAPTDL_CHECKPOINT_PATH=mnist-checkpoint python3 mnist.py

Output (after sending CTRL-C during training):

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 51067
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:24997?rank=0&world_
→˓size=1
INFO:adaptdl.torch:torch.distributed initialized
INFO:adaptdl.torch.epoch:starting at epoch 0
Train Epoch: 0 [0/60000 (0%)] Loss: 2.318445
Train Epoch: 0 [640/60000 (1%)] Loss: 1.647522
...
...
...
Train Epoch: 7 [30080/60000 (50%)] Loss: 0.009690
Train Epoch: 7 [30720/60000 (51%)] Loss: 0.010559
^CINFO:adaptdl._signal:Got SIGINT, exiting gracefully... Send signal again to force exit.
INFO:adaptdl._signal:Got SIGINT, exiting gracefully... Send signal again to force exit.

Training can be resumed by running the script with the same checkpoint path.

$ ADAPTDL_CHECKPOINT_PATH=mnist-checkpoint python3 mnist.py

Output:

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 45371
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:23678?rank=0&world_
→˓size=1
INFO:adaptdl.torch:torch.distributed initialized
INFO:adaptdl.torch.epoch:starting at epoch 7

(continues on next page)
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(continued from previous page)

Train Epoch: 7 [0/60000 (0%)] Loss: 0.070648
Train Epoch: 7 [640/60000 (2%)] Loss: 0.068212
...
...
...
Train Epoch: 13 [58880/60000 (98%)] Loss: 0.081517
Train Epoch: 13 [59520/60000 (99%)] Loss: 0.006973

Test set: Average loss: 0.0281, Accuracy: 9913/10000 (99%)

Whenever possible, it’s recommended to test the training code locally in this way before submitting it to an AdaptDL-
scheduled cluster.

2.4.3 Distributed Training

Training code that uses AdaptDL APIs can also be run on a distributed cluster, without requiring the AdaptDL scheduler.
In this setting, the training job will run using the same number of replicas until it finishes, or until a checkpoint is
manually triggered. Although the number of replicas is fixed, standalone distributed training can still benefit from the
automatic batch size and learning rate scaling offered by AdaptDL.

The following environment variables need to be set for every replica:

• ADAPTDL_MASTER_ADDR: network address of the node running the rank 0 replica, must be accessible from all
other replicas.

• ADAPTDL_MASTER_PORT: available port on the node running the rank 0 replica, must be accessible from all other
replicas.

• ADAPTDL_NUM_REPLICAS: total number of replicas.

• ADAPTDL_REPLICA_RANK: integer rank from 0 .. K-1 for each replica, where K is the total number of replicas.

Assuming two nodes with hostnames node-0 and node-1, on node-0:

$ ADAPTDL_MASTER_ADDR=node-0 ADAPTDL_MASTER_PORT=47000 \
ADAPTDL_NUM_REPLICAS=2 ADAPTDL_REPLICA_RANK=0 python3 mnist.py

And on node-1:

$ ADAPTDL_MASTER_ADDR=node-0 ADAPTDL_MASTER_PORT=47000 \
ADAPTDL_NUM_REPLICAS=2 ADAPTDL_REPLICA_RANK=1 python3 mnist.py

A checkpoint can be triggered by sending an interrupt to any of the replicas. The replica with rank 0 will save the
checkpoint to the path specified by the ADAPTDL_CHECKPOINT_PATH environment variable, and then all replicas will
exit.

Training can be resumed from the checkpoint using any number of replicas. However, each replica will need to be able
to access the saved checkpoint. This means the checkpoint should be saved to a shared distributed filesystem such as
NFS, or be manually copied to each node before resuming training.
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2.5 Using the Adaptive Tune Trial Scheduler

This is a tutorial on using AdaptDL as a Tune Trial Scheduler. We’ll go through an example that uses HyperOpt to
tune hyperparameters like the learning rate, momentum and initial batch size. The batch size and number of replicas
will be automatically adjusted by AdaptDL throughout the lifetimes of the trials so as to efficiently and fairly share the
resources of the Ray cluster.

We’ll be relying on the PyTorch DistributedTrainable Tune API documented here.

2.5.1 Setup

1. Install the required packages pip install -U adaptdl-ray hyperopt

2. Start the ray cluster.

2.5.2 Incorporating the AdaptDL API

In order to make use of the Adaptive functionality, we will need to change the trainable to include the AdaptDL API.

We don’t change the model definition and test and train functions

class ConvNet(nn.Module):
def __init__(self):

super(ConvNet, self).__init__()
# In this example, we don't change the model architecture
# due to simplicity.
self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
self.fc = nn.Linear(192, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 3))
x = x.view(-1, 192)
x = self.fc(x)
return F.log_softmax(x, dim=1)

# Change these values if you want the training to run quicker or slower.
EPOCH_SIZE = 512
TEST_SIZE = 256

def train(model, optimizer, train_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.train()
for batch_idx, (data, target) in enumerate(train_loader):

# We set this just for the example to run quickly.
if batch_idx * len(data) > EPOCH_SIZE:

return
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)

(continues on next page)
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(continued from previous page)

loss.backward()
optimizer.step()

def test(model, data_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
correct = 0
total = 0
with torch.no_grad():

for batch_idx, (data, target) in enumerate(data_loader):
# We set this just for the example to run quickly.
if batch_idx * len(data) > TEST_SIZE:

break
data, target = data.to(device), target.to(device)
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()

else:
return 0

return correct / total

The trainable function train_mnist needs to change though.

+import adaptdl.torch as adl
+
def train_mnist(config: Dict, checkpoint_dir: Optional[str] = None):

# Data Setup
mnist_transforms = transforms.Compose(

[transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))])

- train_loader = DataLoader(datasets.MNIST("~/data",
+ train_loader = adl.AdaptiveDataLoader(datasets.MNIST("~/data",

train=True, download=True, transform=mnist_transforms),
batch_size=64,
shuffle=True)

- test_loader = DataLoader(
+ test_loader = adl.AdaptiveDataLoader(

datasets.MNIST("~/data", train=False, transform=mnist_transforms),
batch_size=64,
shuffle=True)

@@ -21,8 +23,9 @@

model = ConvNet()
model.to(device)

- model = DistributedDataParallel(model)
+ model = adl.AdaptiveDataParallel(model, optimizer)

- for i in range(10):
(continues on next page)
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+ for epoch in adl.remaining_epochs_until(config.get("epochs", 10)):
train(model, optimizer, train_loader)
acc = test(model, test_loader)
# Send the current training result back to Tune

The changes essentially make the dataloaders and model elastic and restart-safe thus adding AdaptDL functionality.
Now we need to use the the AdaptDL trial scheduler which can actually make decisions based on available cluster
resources and trial characteristics.

We first create a trainable (class) and a search space for HyperOpt. We call tune.run and pass in AdaptDLScheduler
as the trial scheduler for all the trials. The AdaptDLScheduler will first try to use GPUs on the Ray cluster. If it finds
none, it will use CPUs to run the trials.

Full example can be found at hyperopt_example.py.

To run the example, simply run it from command line

$ python3 hyperopt_example.py

...
== Status ==
Current time: 2021-10-26 12:55:14 (running for 00:04:55.09)
Memory usage on this node: 2.1/31.2 GiB
Using AdaptDL scheduling algorithm.
Resources requested: 0/8 CPUs, 0/0 GPUs, 0.0/18.43 GiB heap, 0.0/9.21 GiB objects
Result logdir: /tmp
Number of trials: 4/4 (4 TERMINATED)
+-------------------------------+------------+---------------------+----------+--------
→˓+------------------+
| Trial name | status | loc | acc | iter␣
→˓| total time (s) |
|-------------------------------+------------+---------------------+----------+--------
→˓+------------------|
| AdaptDLTrainable_7_2_cd64740f | TERMINATED | 192.168.1.196:20687 | 0.957576 | 102␣
→˓| 92.0071 |
| AdaptDLTrainable_1_2_cd64740e | TERMINATED | 192.168.1.196:21408 | 0.930804 | 102␣
→˓| 115.433 |
| AdaptDLTrainable_1_2_cd647410 | TERMINATED | 192.168.1.196:21407 | 0.953125 | 102␣
→˓| 75.8803 |
| AdaptDLTrainable_5_2_ceeea272 | TERMINATED | 192.168.1.196:21612 | 0.872396 | 102␣
→˓| 102.775 |
+-------------------------------+------------+---------------------+----------+--------
→˓+------------------+

Best trial config: {'bs': 960, 'epochs': 100, 'lr': 0.010874198064009714, 'momentum': 0.
→˓5627724615056127}
Best trial mean_accuracy: 0.8723958333333334

The trial names in the end can be interpreted as AdaptDLTrainable_$num_replicas_$num_restarts_$trial_id. Trials
can expand or shrink based on the decisions of the AdaptDL optimizer and this gets reflected through their names.
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2.6 Adaptdl on Ray AWS

The executable adaptdl_on_ray_aws allows you to run an AdaptDL job on an AWS-Ray cluster. The intention of
this module is to allow you to get AdaptDL jobs working quickly, without the need to deploy Kubernetes, and to use
Ray’s cluster rescaling with AdaptDL’s worker autoscaling.

This module includes a scheduler and all of the framework code necessary to run an AdaptDL job on a AWS-Ray
cluster. All inter-worker communication, checkpointing, and rescheduling are handled for you.

2.6.1 How this module works

adaptdl_on_ray_aws submits a Ray task to the cluster with the working directory and your main executable file path
– as well as any command line arguments. This task dynamically allocates a number of worker tasks depending on
the AdaptDL scalability parameters and passes the working directory and execution parameters to the workers. The
workers then run the code and communicate back scalability parameters. If the job determines that the number of
workers should change, then the workers will checkpoint, and a new set of workers will be created.

This is analogous to how the AdaptDL scheduler for Kubernetes works when restricted to a single AdaptDL training
job, where pods in Kubernetes are replaced by Ray tasks.

2.6.2 Usage

Modifications to your training code

In order for your code to run, your training code will need to use AdaptDL. Please follow this tutorial for more infor-
mation.

Your code should follow these properties:

• You do not need to make any calls to Ray

• Your code will also need to be able to run from the command line

• The code can take can take command line arguments via sys.argv and argparse

• The code is run as __main__

• Local imports from the same directory as code.py are supported

Please note that there are no code changes from an AdaptDL job for use in a Kubernetes cluster and for use in this
module.

Deploying a Ray cluster on AWS EC2

You will need a ray cluster already deployed. Please see these instructions and tutorial for configuring and launching a
ray cluster.

When creating the cluster, you will need the following on all of the nodes:

• A dockerfile with these installed:
– The pip package adaptdl_ray

– A working installation of pytorch-gpu

– Whatever other pip dependencies you may require

• Sufficient disk space for the above docker image, and whatever disk space you may need to run your code
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• Some maximum number of worker nodes

See this configuration file for an example of a cluster configuration. To install adaptdl_ray and any other pip depen-
dencies on the nodes, use the fields:

setup_commands:
- pip install adaptdl-ray
- pip install <some-other-library>

To ensure that the nodes have enough space for Docker to use, you may need to include something like the following
BlockDeviceMapping configuration for all of the nodes:

node_config:
InstanceType: <your instance type>
BlockDeviceMappings:
- DeviceName: /dev/sda1
Ebs:
VolumeSize: 100 # Feel free to change this value

Just creating the EBS volume will not make it available for docker. You will also need to format and mount the volume
as part of the initialization commands:

initialization_commands:
- sudo usermod -aG docker $USER
- sudo mkdir /docker_volume
- sudo mkfs -t xfs /dev/nvme1n1
- sudo mount /dev/nmve1n1 /docker_volume -w
- sudo dockerd --data-root /docker_volume &

If you find that your code does not have enough access to disk space, you can also mount an external volume (as
provisioned above) to the runtime containers via:

docker:
image: <your-image-name>
run_options:
- -v '/docker_volume:/<the-path-in-the-container>

Make sure that the permissions for the external volume are set properly.

Once the cluster is created, you may need to edit the cluster’s security group to allow your machine to access the cluster
to allow your machine to access the cluster. Follow these instructions to add an inbound rule with TCP for TCP with
IP on port 10001

Running your code

Once the cluster has been deployed, you will need the address and port of the cluster head. Generally, this will be of the
form <head-node-ip>:10001. Make sure that you have access to that port via the AWS subnet and inbound rules.

On your local machine, make sure to install the pip package for adaptdl_ray. This package includes the launcher
script, and will generally install it in /usr/local/bin/adaptdl_on_ray_aws.

If you have some AdaptDL training code runnable in the current directory at code.py via python3 code.py
<command-line-args>, you can run the training code on Ray via

adaptdl_on_ray_aws -u "ray://head-node-ip:10001" -f code.py -m <maximum-number-of-workers>
-d $(pwd) --cpus <cpus-per-worker> --gpus <gpus-per-worker> -- <command-line-args>
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If your local version of Python does not match the cluster’s, Ray will not work. In this case, one option is to run the
command within a Docker container. Be sure to mount your code directory in the container, e.g. via -v.

Retrieving your trained model

In order to retrieve the result of your training code, you will need to manually save it to some external store. For
example, you could write it to S3, or you could mount an EFS store to the cluster and write it to that. See the Advanced
Usage section for more details on using EFS.

2.6.3 Example

To run the example code found in examples/pytorch-cifar/main.py, do the following:

1. Install the AWS CLI and authenticate. See the AWS-CLI documentation for more details.

2. Inside the example/ray/aws directory, run ray up -y cluster.yaml -v. Note: running this step will cre-
ate an AWS EC2 cluster, which will cost money. Make sure to tear down your cluster if you stop using it.

3. Keep track of the ip and port ray up returns. 4a. Launch the job from within a docker container

1. Still within examples/pytorch-cifar, run docker run -v $(pwd):/pytorch-cifar -ti
rayproject/ray:<version>-cpu bash, where <version> is the same Ray version in your cluster’s
Docker image.

2. Within that Docker shell, run pip install adaptdl_ray. This will install the executable to submit the job to
the cluster.

3. Run docker run rayproject/ray:<version>-cpu adaptdl_on_ray_aws -f /pytorch-cifar/
main.py -d /pytorch-cifar -m 3 -u ray://<ip>:<port> -- -autoscale-bsz

4b. Launch the job using bare Python
1. Install the exact Python version used by your cluster. You can determine the python version by running ray

attach <cluster-config-file, and then running Python.

2. Run pip install adaptdl_ray if you have not done so already.

3. Within examples/pytorch-cifar, run adaptdl_on_ray_aws -f main.py -d $(pwd) -m 3 -u
ray://<ip>:<port> -- -autoscale-bsz

5. Upon completion, tear down the cluster with ray down -y cluster.yaml.

2.6.4 Advanced Usage

Spot instances

AdaptDL on Ray AWS supports spot instances for the ray cluster. Each of the workers will listen to the for the spot
instance termination notification. If a node is scheduled to be deleted, a checkpoint will be taken and the job will be
rescaled to exclude and find a replacement for that node.
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Dealing with Large Datasets

As workers can be rescheduled to fresh nodes, downloading large datasets to each worker can be expensive. For
example, if a worker downloads data for 20 minutes when it is scheduled to a new node, then the other workers will be
idle for 20 minutes as well, even if they already have the data. This is exacerbated if the autoscaler gradually increases
the number of workers.

There are several options to deal with this:

1. Use Amazon S3 with an S3Dataset.

2. Use EFS to share the data between the nodes

Using S3

One difference with using an S3 Dataset in the Ray cluster versus on your local machine is ensuring that all of the nodes
have the proper permissions. Please follow these instructions

Using EFS

EFS allows you to use a distributed filesystem with your EC2 cluster. To begin, you will need to create an EFS instance.
Once that is done, use the setup_commands listed here to attach your EFS instance to the nodes.

Please note that using EFS will incur additional costs.

Imports

If you need Python modules that are local to your machine but not located in the same directory as your main script, set
--working-dir to a directory that contains the main script and all the Python modules. The argument to -f/--file
should then be the path to the main script relative to the argument to --working-dir.

Timeouts

There are two conditions where the job controller will need to wait for some reponse. In order to prevent a lack of
response from permamently stopping the job, there are timeouts.

First, when the workers are terminated in order to perform a rescaling, the controller will wait to recieve a checkpoint
object of the training state from worker 0. If the controller does not receive a checkpoint by the amount of time specified
in --checkpoint-timeout (default 120 seconds), then the controller will use a previous version of the checkpoint,
or restart from 0, if a previous checkpoint does not exist. Note that spot instances have around a 2 minute warning for
termination.

Second, when the cluster is rescaling to more workers, it can take some time for the new workers to be ready. In addition,
spot instances requests may never be fulfilled if their bid price is too low. The controller therefore waits for some time,
up to the amount specified in --cluster-rescale-timeout (default 60), for the new nodes to be provisioned and
ready. If the nodes are not ready by that time, it schedules up to the maximum supported by the current cluster. Please
note that the new nodes need to download the Docker image set in the cluster config. As these images can be large, it
may take 5-10 minutes for new nodes to be available.
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2.7 adaptdl package

2.7.1 Subpackages

adaptdl.torch package

class adaptdl.torch.Accumulator(*args, **kwargs)
Bases: MutableMapping

This class helps aggregate simple statistics across all replicas in the current job, and across any number of
checkpoint-restarts. Can be used to compute metrics like loss and accuracy, synchronized across each replica.

Accumulators imitate python dictionaries, but with a few key differences described below. Primarily, its usage
and behavior depend on whether it is set to accumulation mode or to synchronized mode.

1. Accumulation mode: the accumulator is being updated on all replicas. Operations like accum["key"]
+= val or accum.update(key=val) will aggregate the updates locally on each replica, which are lazily
synchronized in the background (either upon a checkpoint or a switch to synchronized mode). Each replica
may make different updates, which are summed together when synchronized. While accumulation mode is
enabled, all read operations on the accumulator will behave as if they were performed on an empty dict,
ie. len(accum) will always return 0. By default, all accumulators are set to accumulation mode.

2. Synchronized mode: the accumulator contains the same data on every replica, and the application must
ensure that all write operations are exactly the same across all replicas. While in synchronized mode, the
accumulator may be used as if it were a native python dict, and all read/write operations are supported.
Accumulator.synchronized() may be used to enter synchronized mode. Upon entering synchronized
mode, the accumulator will automatically sum all updates from all replicas to ensure the same data is
available to each replica.

Using accumulators, many training/validation metrics can be computed easily and correctly in an elastic dis-
tributed setting. For example, a simple validation step which calculates a loss and accuracy can be implemented
as follows:

accum = Accumulator() # New accumulator starts in accumulation mode.

for epoch in remaining_epochs_until(60):

for batch in validloader:
...
accum["loss_sum"] += <loss summed within the batch>
accum["correct"] += <number of correct predictions>
accum["total"] += <total number of samples in the batch>

with accum.synchronized(): # Enter synchronized mode.
accum["loss_avg"] = accum["loss_sum"] / accum["total"]
accum["accuracy"] = accum["correct"] / accum["total"]
print("Loss: {}, Accuracy: {}".format(

accum["loss_avg"], accum["accuracy"]))
accum.clear()

# Back to accumulation mode.

Parameters
• args – Positional arguments same as dict.

• kwargs – Keyword arguments same as dict.
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__iadd__(other)
Supports the += operation, e.g. accum += {key1: val1, key2: val2}. Behaves the same way as
accum.update({key1: val1, key2: val2}).

Parameters
other – Mapping object or an iterable of key-update pairs.

__isub__(other)
Supports the -= operation, e.g. accum -= {key1: val1, key2: val2}. Behaves the same way as
accum.subtract({key1: val1, key2: val2}).

Parameters
other – Mapping object or an iterable of key-update pairs.

__getitem__(key)
Supports indexing, e.g. val = accum[key] and accum[key] += 1. The former (read access) should
only be used when the accumulator is in synchronized mode.

Parameters
other – Key used to access a value in the accumulator.

subtract(*args, **kwargs)
Apply a collection of key-update pairs. Unlike Accumulator.update(), this method subtracts the updates
from the accumulated values.

Parameters
• args – Positional arguments same as Accumulator.update().

• kwargs – Keyword arguments same as Accumulator.update().

synchronized()

A context manager which can be used to define the code to execute in synchronized mode. Within the
context manager, any code can interact with this accumulator as if it were a regular Python dict. The
application must ensure that whatever operations performed within this context block are the same across
all replicas.

Warning: Entering this context manager is a distributed synchronization point! Please ensure that all
replicas enter this context manager at the same point in their code.

update(*args, **kwargs)
Apply a collection of key-update pairs. Unlike dict.update, this method additively applies the updates
to the accumulated values.

Parameters
• args – Positional arguments same as dict.update. Can be a mapping object or an iterable

of key-update pairs.

• kwargs – Keyword arguments same as dict.update. Each keyword is the string key
corresponding to the provided update.

class adaptdl.torch.AdaptiveDataLoader(dataset, batch_size=1, shuffle=False, **kwargs)
Bases: DataLoader, AdaptiveDataLoaderMixin

This class is a PyTorch DataLoader that also supports adaptive batch sizes and checkpoint-restart elasticity.
Applications can typically use objects of this class as direct replacements for PyTorch DataLoaders. However,
some notable differences are:
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1. The batch_size argument defines the target total batch size across all replicas, rather than the local batch
size on each replica.

2. Custom sampler and batch_sampler are not supported.

3. Iterating through the dataloader is only allowed from within an epoch loop (see adaptdl.torch.epoch ),
and only one dataloader loop is allowed at any given time.

Parameters
• dataset (torch.util.data.Dataset) – Dataset from which to load the data.

• batch_size (int) – The target total batch size across all replicas. The actual total batch
size may be different due to rounding (each replica must have the same local batch size), or
being scaled up using adaptive batch sizes.

• shuffle (bool) – Whether the data is reshuffled at every epoch.

• **kwargs – Keyword arguments passed to torch.util.data.Dataloader.

Raises
ValueError – If sampler or batch_sampler are not None.

__iter__()

Iterate over batches of data. When adaptive batch size is disabled, stops after the entire dataset has been
processed once in total by all replicas. This means if there are K replicas, then this method will iterate over
~1/K of the dataset. When adaptive batch size is enabled, stops after making enough statistical progress
roughly equivalent to one pass over the dataset with non-adaptive batch size. In this case, the dataset may
be processed more than once.

A checkpoint-restart may be triggered in-between each batch. In this case, the current iteration state will
be saved and restored after the restart, and continue where it left off.

class adaptdl.torch.AdaptiveDataParallel(model, optimizer, lr_scheduler=None, mp_scaler=None,
scaling_rule: Optional[ScalingRuleBase] = None,
name='adaptdl-dataparallel', **kwargs)

Bases: DistributedDataParallel

This class extends PyTorch DistributedDataParallel with support for adaptive batch sizes and checkpoint-restart
elasticity. It automatically saves the given model, optimizer, and (optionally) LR scheduler whenever a checkpoint
is triggered, and restores their states after restart. The optimizer is automatically patched with the chosen scaling
rule.

Parameters
• model (torch.nn.Module) – Model to be distributed.

• optimizer (torch.optim.Optimizer) – Optimizer used to update the given

• parameters (model's) –

• of (will be patched using subclass) –

:param adaptdl.torch.scaling_rules.ScalingRuleBase.: :param scaling_rule: Scaling rule used to
:type scaling_rule: ScalingRuleBase :param patch the given optimizer: :param default to AdaScale.: :param
lr_scheduler: LR scheduler used :type lr_scheduler: torch.optim.lr_scheduler._LRScheduler :param to anneal
the learning rate for the given optimizer.: :param name: Unique name for each instance of this class, needed only
:type name: string :param if multiple instances exist.:

forward(*args, **kwargs)
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property gain

Current estimate of the AdaScale gain (r_t) value.

to_tensorboard(writer, global_step, tag_prefix='')
Output some useful metrics to TensorBoard.

Parameters
• writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter object to

output metrics to.

• global_step (int) – Global step value to record.

• tag_prefix (str) – Prefix added to each metric’s tag.

training: bool

zero_grad(*args, **kwargs)
Sets gradients of all model parameters to zero.

class adaptdl.torch.ElasticSampler(dataset, shuffle=True)
Bases: Sampler

A PyTorch Sampler which partitions data samples across multiple replicas, and supports deterministic continu-
ing across checkpoint-restarts. Shuffling is deterministic for each epoch, and ElasticSampler.set_epoch()
should be invoked to obtain different orderings in different epochs.

Parameters
• dataset (torch.util.data.Dataset) – The dataset to sample from.

• shuffle (bool) – Whether the data samples should be shuffled.

__iter__()

Iterate through the samples in the dataset, in the order defined for a set epoch, starting at a set index.
Produces only the indices for the local replica.

Returns: Iterator over data sample indices.

__len__()

The total number of samples to be iterated through, starting at the set index, for the local replica.

Returns (int): Number of samples.

set_epoch(epoch, index=0)
Set the epoch to derive samples from. Optional argument index can be specified to start sampling from a
particular index, e.g. after a checkpoint-restart.

Parameters
• epoch (int) – The epoch to sample from.

• index (int) – The index to start sampling from.

adaptdl.torch.current_dataloader()

Reference to the data loader currently being iterated.

Returns (AdaptiveDataLoaderHelper): Current data loader.

adaptdl.torch.current_epoch()

Get the current epoch while iterating with remaining_epochs_until().

30 Chapter 2. Getting Started



AdaptDL

Returns
The current epoch number if called from within a remaining_epochs_until() iteration, None
otherwise.

Return type
int or None

adaptdl.torch.finished_epochs()

Get the number of epochs finished using remaining_epochs_until().

Returns
The number of finished epochs. Equal to current_epoch() if called from within a
remaining_epochs_until() iteration.

Return type
int

adaptdl.torch.init_process_group(backend, init_method=None, world_size=None, rank=None)
Initializes the default distributed process group and the AdaptDL collectives module.

Parameters
• backend (str or Backend) – The backend to use. Use “nccl” for multi-GPU training else

“gloo”.

• init_method (str, optional) – URL specifying how to initialize the process group.

• world_size (int, optional) – Number of processes participating in the job

• rank (int, optional) – Rank of the current process (it should be a number between 0 and
world_size-1).

If init_method, world_size and rank is NOT provided, typically in the Kubernetes environment, AdaptDL will
try to infer them through environment variables ADAPTDL_MASTER_ADDR, ADAPTDL_NUM_REPLICAS
and ADAPTDL_REPLICA_RANK respectively.

adaptdl.torch.remaining_epochs_until(epoch)
Iterate over epochs in a way that is consistent with checkpoint-restarts. For example:

for epoch in remaining_epochs_until(30):
print(current_epoch()) # Should print 0 through 29

for epoch in remaining_epochs_until(60):
print(current_epoch()) # Should print 30 through 59

If a checkpoint-restart happens during an epoch, all previous epochs will be skipped after the program restarts.

Parameters
epoch (int) – The epoch number to end at (exclusively).

Raises
RuntimeError – If invoked before a previous epoch loop has ended.
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Submodules

adaptdl.torch.accumulator module

class adaptdl.torch.accumulator.Accumulator(*args, **kwargs)
Bases: MutableMapping

This class helps aggregate simple statistics across all replicas in the current job, and across any number of
checkpoint-restarts. Can be used to compute metrics like loss and accuracy, synchronized across each replica.

Accumulators imitate python dictionaries, but with a few key differences described below. Primarily, its usage
and behavior depend on whether it is set to accumulation mode or to synchronized mode.

1. Accumulation mode: the accumulator is being updated on all replicas. Operations like accum["key"]
+= val or accum.update(key=val) will aggregate the updates locally on each replica, which are lazily
synchronized in the background (either upon a checkpoint or a switch to synchronized mode). Each replica
may make different updates, which are summed together when synchronized. While accumulation mode is
enabled, all read operations on the accumulator will behave as if they were performed on an empty dict,
ie. len(accum) will always return 0. By default, all accumulators are set to accumulation mode.

2. Synchronized mode: the accumulator contains the same data on every replica, and the application must
ensure that all write operations are exactly the same across all replicas. While in synchronized mode, the
accumulator may be used as if it were a native python dict, and all read/write operations are supported.
Accumulator.synchronized() may be used to enter synchronized mode. Upon entering synchronized
mode, the accumulator will automatically sum all updates from all replicas to ensure the same data is
available to each replica.

Using accumulators, many training/validation metrics can be computed easily and correctly in an elastic dis-
tributed setting. For example, a simple validation step which calculates a loss and accuracy can be implemented
as follows:

accum = Accumulator() # New accumulator starts in accumulation mode.

for epoch in remaining_epochs_until(60):

for batch in validloader:
...
accum["loss_sum"] += <loss summed within the batch>
accum["correct"] += <number of correct predictions>
accum["total"] += <total number of samples in the batch>

with accum.synchronized(): # Enter synchronized mode.
accum["loss_avg"] = accum["loss_sum"] / accum["total"]
accum["accuracy"] = accum["correct"] / accum["total"]
print("Loss: {}, Accuracy: {}".format(

accum["loss_avg"], accum["accuracy"]))
accum.clear()

# Back to accumulation mode.

Parameters
• args – Positional arguments same as dict.

• kwargs – Keyword arguments same as dict.
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__iadd__(other)
Supports the += operation, e.g. accum += {key1: val1, key2: val2}. Behaves the same way as
accum.update({key1: val1, key2: val2}).

Parameters
other – Mapping object or an iterable of key-update pairs.

__isub__(other)
Supports the -= operation, e.g. accum -= {key1: val1, key2: val2}. Behaves the same way as
accum.subtract({key1: val1, key2: val2}).

Parameters
other – Mapping object or an iterable of key-update pairs.

__getitem__(key)
Supports indexing, e.g. val = accum[key] and accum[key] += 1. The former (read access) should
only be used when the accumulator is in synchronized mode.

Parameters
other – Key used to access a value in the accumulator.

subtract(*args, **kwargs)
Apply a collection of key-update pairs. Unlike Accumulator.update(), this method subtracts the updates
from the accumulated values.

Parameters
• args – Positional arguments same as Accumulator.update().

• kwargs – Keyword arguments same as Accumulator.update().

synchronized()

A context manager which can be used to define the code to execute in synchronized mode. Within the
context manager, any code can interact with this accumulator as if it were a regular Python dict. The
application must ensure that whatever operations performed within this context block are the same across
all replicas.

Warning: Entering this context manager is a distributed synchronization point! Please ensure that all
replicas enter this context manager at the same point in their code.

update(*args, **kwargs)
Apply a collection of key-update pairs. Unlike dict.update, this method additively applies the updates
to the accumulated values.

Parameters
• args – Positional arguments same as dict.update. Can be a mapping object or an iterable

of key-update pairs.

• kwargs – Keyword arguments same as dict.update. Each keyword is the string key
corresponding to the provided update.

2.7. adaptdl package 33



AdaptDL

adaptdl.torch.data module

class adaptdl.torch.data.AdaptiveDataLoader(dataset, batch_size=1, shuffle=False, **kwargs)
Bases: DataLoader, AdaptiveDataLoaderMixin

This class is a PyTorch DataLoader that also supports adaptive batch sizes and checkpoint-restart elasticity.
Applications can typically use objects of this class as direct replacements for PyTorch DataLoaders. However,
some notable differences are:

1. The batch_size argument defines the target total batch size across all replicas, rather than the local batch
size on each replica.

2. Custom sampler and batch_sampler are not supported.

3. Iterating through the dataloader is only allowed from within an epoch loop (see adaptdl.torch.epoch ),
and only one dataloader loop is allowed at any given time.

Parameters
• dataset (torch.util.data.Dataset) – Dataset from which to load the data.

• batch_size (int) – The target total batch size across all replicas. The actual total batch
size may be different due to rounding (each replica must have the same local batch size), or
being scaled up using adaptive batch sizes.

• shuffle (bool) – Whether the data is reshuffled at every epoch.

• **kwargs – Keyword arguments passed to torch.util.data.Dataloader.

Raises
ValueError – If sampler or batch_sampler are not None.

__iter__()

Iterate over batches of data. When adaptive batch size is disabled, stops after the entire dataset has been
processed once in total by all replicas. This means if there are K replicas, then this method will iterate over
~1/K of the dataset. When adaptive batch size is enabled, stops after making enough statistical progress
roughly equivalent to one pass over the dataset with non-adaptive batch size. In this case, the dataset may
be processed more than once.

A checkpoint-restart may be triggered in-between each batch. In this case, the current iteration state will
be saved and restored after the restart, and continue where it left off.

class adaptdl.torch.data.AdaptiveDataLoaderHelper(batch_size=1)
Bases: object

This class provides fine-grained control over adaptive training loops. It can be used for building more user-
friendly custom data loaders, such as AdaptiveDataLoader.

Parameters
batch_size (int) – The target total batch size across all replicas. The actual total batch size
may be different due to rounding (each replica must have the same local batch size), or being
scaled up using adaptive batch sizes.

property accumulation_steps

The number of batches returned by the dataloader before a step is taken.

autoscale_batch_size(max_batch_size, local_bsz_bounds=None, gradient_accumulation=False)
Enables adaptive batch size. Should be invoked once after the data loader object is created.

Parameters
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• max_batch_size (int) – Maximum total batch size allowed.

• local_bsz_bounds (tuple) – A pair of (min_local_bsz, max_local_bsz), the min and
max local batch sizes allowed on each replica.

Raises
ValueError – If any of the provided batch size bounds are invalid.

context()

All iterators should be iterated under this context. It ensures proper cleanup of elastic context at the end of
each epoch.

property current_batch_size

property current_index

The total number of data samples processed so far in the current loop. Includes the data processed by all
replicas. None if this data loader is not currently being iterated.

property current_local_bsz

The current logical local batch size used by the dataloader. The batch size returned by the dataloader may
be smaller if gradient accumulation is used

property end_index

(Optional) Can be used to track the end index of dataset across restarts.

is_accum_step()

Whether the current step’s gradient will be accumulated.

is_optim_step()

Whether the optimizer step will be invoked in this step.

property local_bsz_bounds

The local batch size bounds on each replica. A pair of integers, (min_local_bsz, max_local_bsz).

property max_batch_size

The maximum total batch size allowed for adaptive batch size. None if adaptive batch size is disabled.

profile(commit)
Every iteration of every epoch should be profiled under this context. Note that, custom DataLoader writers
should make sure that it gets called equal number of times on each replica.

Parameters
commit (bool) – Whether to commit the profiled results.

skipdone()

Should be called just after entering the _elastic context to make sure that the dataloader loop is not replayed
if has already finished before a restart.

to_tensorboard(writer, global_step, tag_prefix='')
Output some useful metrics to TensorBoard.

Parameters
• writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter object to

output metrics to.

• global_step (int) – Global step value to record.

• tag_prefix (str) – Prefix added to each metric’s tag.
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train()

Set this data loader to be the one used for training. Only one data loader may be used for training.

property training

class adaptdl.torch.data.AdaptiveDataLoaderMixin(batch_size)
Bases: object

This class provides elastic functionality to any custom DataLoader which inherits it. It defines a member _elas-
tic of type AdaptiveDataLoaderHelper which has useful methods and members to implement restart-safe,
elastic DataLoaders. It also exposes public methods which can be used inside training loops directly from
AdaptiveDataLoader.

property accumulation_steps

The number of batches returned by the dataloader before a step is taken.

autoscale_batch_size(max_batch_size, local_bsz_bounds=None, gradient_accumulation=False)

property current_batch_size

property current_local_bsz

to_tensorboard(writer, global_step, tag_prefix='')
Output some useful metrics to TensorBoard.

Parameters
• writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter object to

output metrics to.

• global_step (int) – Global step value to record.

• tag_prefix (str) – Prefix added to each metric’s tag.

property training

class adaptdl.torch.data.ElasticSampler(dataset, shuffle=True)
Bases: Sampler

A PyTorch Sampler which partitions data samples across multiple replicas, and supports deterministic continu-
ing across checkpoint-restarts. Shuffling is deterministic for each epoch, and ElasticSampler.set_epoch()
should be invoked to obtain different orderings in different epochs.

Parameters
• dataset (torch.util.data.Dataset) – The dataset to sample from.

• shuffle (bool) – Whether the data samples should be shuffled.

__iter__()

Iterate through the samples in the dataset, in the order defined for a set epoch, starting at a set index.
Produces only the indices for the local replica.

Returns: Iterator over data sample indices.

__len__()

The total number of samples to be iterated through, starting at the set index, for the local replica.

Returns (int): Number of samples.
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set_epoch(epoch, index=0)
Set the epoch to derive samples from. Optional argument index can be specified to start sampling from a
particular index, e.g. after a checkpoint-restart.

Parameters
• epoch (int) – The epoch to sample from.

• index (int) – The index to start sampling from.

adaptdl.torch.data.current_dataloader()

Reference to the data loader currently being iterated.

Returns (AdaptiveDataLoaderHelper): Current data loader.

adaptdl.torch.epoch module

This module provides tools for the top-level loop over epochs during training. AdaptDL expects the training program
to be implemented as loop over several epochs, each containing a series of loops over datasets (e.g. one loop over the
training set followed by one loop over the validation set). The program can be interrupted between every iteration of
any dataset loop, trigger a checkpoint to be taken, and restarted using a different set of replicas.

Due to checkpoint-restarts, parts of the training program may be executed multiple times (e.g. once after each
restart)! To avoid incorrect execution, ensure that your code is idempotent in the following locations:

1. Immediately before any epoch loop (using remaining_epochs_until()).

2. Immediately before any dataset loop (using adaptdl.torch.data.AdaptiveDataLoader).

Your code may be non-idempotent in other locations.

### IDEMPOTENT CODE ONLY ###

for epoch in remaining_epochs_until(30):

### IDEMPOTENT CODE ONLY ###

for batch in train_loader:
# ... any code ...

### IDEMPOTENT CODE ONLY ###

for batch in valid_loader:
# ... any code ...

# ... any code ...

# ... any code ...

### END PROGRAM ###

For example, a common non-idempotent operation is learning-rate annealing:

for epoch in remaining_epochs_until(30):

lr_scheduler.step() # (A) WRONG!

(continues on next page)
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(continued from previous page)

for batch in train_loader:
# ...

lr_scheduler.step() # (B) WRONG!

for batch in valid_loader:
# ...

lr_scheduler.step() # (C) OK!

Location (A) will be executed again after any checkpoint-restart during either the training or validation loop, resulting in
the learning rate being annealed several times in one epoch! Similarly with location (B), if checkpoint-restart happens
during the validation loop.

Location (C) results in the correct behavior, because (1) an epoch will not be repeated once it has finished, and (2) no
checkpoint-restarts can occur between the learning rate annealing and the end of the epoch.

adaptdl.torch.epoch.current_epoch()

Get the current epoch while iterating with remaining_epochs_until().

Returns
The current epoch number if called from within a remaining_epochs_until() iteration, None
otherwise.

Return type
int or None

adaptdl.torch.epoch.finished_epochs()

Get the number of epochs finished using remaining_epochs_until().

Returns
The number of finished epochs. Equal to current_epoch() if called from within a
remaining_epochs_until() iteration.

Return type
int

adaptdl.torch.epoch.remaining_epochs_until(epoch)
Iterate over epochs in a way that is consistent with checkpoint-restarts. For example:

for epoch in remaining_epochs_until(30):
print(current_epoch()) # Should print 0 through 29

for epoch in remaining_epochs_until(60):
print(current_epoch()) # Should print 30 through 59

If a checkpoint-restart happens during an epoch, all previous epochs will be skipped after the program restarts.

Parameters
epoch (int) – The epoch number to end at (exclusively).

Raises
RuntimeError – If invoked before a previous epoch loop has ended.
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adaptdl.torch.gradient_noise_scale module

class adaptdl.torch.gradient_noise_scale.GradientNoiseScale(adp, optimizer, mp_scaler=None,
num_replicas=None,
accum_scale=None)

Bases: object

This class tracks gradient related stats and takes care of gradient accumulation.

property accum_count

property accum_scale

gain(scale)
Current estimate of the GradientNoiseScale gain ratio.

Parameters
scale (float) – The total scale to estimate the gain ratio for.

Returns (float): Estimate of gain ratio.

get_progress()

property raw_sqr_avg

property raw_var_avg

reset_accumulation()

reset accumulation calculations and gradients.

set_accum_scale(accum_scale)

set_progress(progress)

property should_zero_grad

sqr_avg()

Current estimate of the squared l2-norm of the true gradient (sigma squared).

Returns (float): Estimate of squared l2-norm.

var_avg()

Current estimate of the trace of the covariance of the true gradient (mu squared).

Returns (float): Estimate of trace of the covariance.

adaptdl.torch.iterator module

class adaptdl.torch.iterator.AdaptiveBPTTIterator(dataset, batch_size, bptt_len, **kwargs)
Bases: BPTTIterator, AdaptiveDataLoaderMixin
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adaptdl.torch.parallel module

class adaptdl.torch.parallel.AdaptiveDataParallel(model, optimizer, lr_scheduler=None,
mp_scaler=None, scaling_rule:
Optional[ScalingRuleBase] = None,
name='adaptdl-dataparallel', **kwargs)

Bases: DistributedDataParallel

This class extends PyTorch DistributedDataParallel with support for adaptive batch sizes and checkpoint-restart
elasticity. It automatically saves the given model, optimizer, and (optionally) LR scheduler whenever a checkpoint
is triggered, and restores their states after restart. The optimizer is automatically patched with the chosen scaling
rule.

Parameters
• model (torch.nn.Module) – Model to be distributed.

• optimizer (torch.optim.Optimizer) – Optimizer used to update the given

• parameters (model's) –

• of (will be patched using subclass) –

:param adaptdl.torch.scaling_rules.ScalingRuleBase.: :param scaling_rule: Scaling rule used to
:type scaling_rule: ScalingRuleBase :param patch the given optimizer: :param default to AdaScale.: :param
lr_scheduler: LR scheduler used :type lr_scheduler: torch.optim.lr_scheduler._LRScheduler :param to anneal
the learning rate for the given optimizer.: :param name: Unique name for each instance of this class, needed only
:type name: string :param if multiple instances exist.:

forward(*args, **kwargs)

property gain

Current estimate of the AdaScale gain (r_t) value.

to_tensorboard(writer, global_step, tag_prefix='')
Output some useful metrics to TensorBoard.

Parameters
• writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter object to

output metrics to.

• global_step (int) – Global step value to record.

• tag_prefix (str) – Prefix added to each metric’s tag.

training: bool

zero_grad(*args, **kwargs)
Sets gradients of all model parameters to zero.
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adaptdl.torch.scaling_rules module

class adaptdl.torch.scaling_rules.AdaScale

Bases: ScalingRuleBase

Implements the AdaScale algorithm for scaling the learning rate for distributed and large batch size training.

scale_lr(scale)
Calculate factors to be applied to lr for each parameter group.

class adaptdl.torch.scaling_rules.LEGWScale(base_warmup_epochs, data_size)
Bases: ScalingRuleBase

Implements the LEGWScale algorithm for scaling the learning rate.

Essentially, with LEGWScale, lr_factor is calculated based on training progress as follows: - when current_step
< base_warmup_epoch * scale * steps_per_epoch:

lr_factor = sqrt(scale) * progress_ratio where `progress_ratio = current_step /

(scale * base_warmup_epochs * steps_per_epoch)`

• when current_step >= base_warmup_epoch * scale * steps_per_epoch: lr_factor = sqrt(scale)

In order to adapt LEGWScale to AdaptDL, progress_ratio is calculated differently as: progress / (scale *
base_warmup_epochs * steps_per_epoch) where progress is the effective steps trained based on AdaptDL’s es-
timation.

Argmuents:
base_warmup_epochs: Base warmup epochs data_size: total number of samples in the dataset

scale_lr(scale)

class adaptdl.torch.scaling_rules.LinearScale

Bases: ScalingRuleBase

scale_lr(scale)

class adaptdl.torch.scaling_rules.ScalingRuleBase

Bases: object

Base class for scaling rules that has the ability to track gradient noise scale calculations. Its subclasses can be
used in combination with adaptdl.torch.parallel.AdaptiveDataParallel and torch.optim.SGD.

optim = torch.optim.SGD(model, lr=0.001)
adascale = AdaScale()
model = AdaptiveDataParallel(model, optim, adascale)

for epoch in ...:
for batch in ...:

optim.zero_grad()
loss = ...
loss.backward()
adascale.step()

initialize(adp, optimizer, patch_optimizer=False)

scale_lr(scale)
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step(*args, **kwargs)
Run one optimizer step. Essentially just invokes optimizer.step(*args, **kwargs) with a scaled
learning rate.

Parameters
• args – Positional arguments passed to optimizer.step.

• kwargs – Keyword arguments passed to optimizer.step.

zero_grad(*args, **kwargs)

class adaptdl.torch.scaling_rules.SqrtScale

Bases: ScalingRuleBase

scale_lr(scale)

2.7.2 Submodules

adaptdl.checkpoint module

This module provides functionality to Save and load arbitrary state as part of checkpoint-restart elasticity. The State
class can be subclassed to define how to save/load any state to/from persistent storage, so it can be restored after the
current job restarts and resumed from where it left off.

class adaptdl.checkpoint.State(name)
Bases: object

This class implements An arbitrary piece of state which can be saved and loaded as part of a checkpoint, and
synchronized across all replicas. Should be sub-classed to define custom save, load, and sync logic.

load(fileobj)
This method should be overridden by subclasses to define how the state is loaded. Is invoked by load_state
to load the state from persistent storage.

Parameters
fileobj (BinaryIO) – A binary readable file object.

save(fileobj)
This method should be overridden by subclasses to define how the state is saved. Is invoked by
save_all_states and save_state to save the state into persistent storage.

Parameters
fileobj (BinaryIO) – A binary writable file object.

sync()

This method should be overridden by subclasses to define how the state is synchronized across replicas.
This might be necessary to make sure the state is consistent before saving it to persistent storage. Is invoked
by save_state before saving the state.

adaptdl.checkpoint.load_state(state)
Load the given State object from persistent storage. If the object was previously saved, then State.load will be
invoked with a readable file object to load from.

Parameters
state (State) – State object to load from persistent storage.

Returns
True if state was previously saved and State.load was invoked, False otherwise.
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adaptdl.checkpoint.save_all_states()

Invokes save_state on all State objects for which State.skip is True. This function can be used to trigger a global
checkpoint and save every State in the current job.

adaptdl.checkpoint.save_state(state, checkpoint_dir, sync=True)
Saves a State object to persistent storage. First invokes State.sync on all replicas if sync is True (default), and
then invokes State.save on the replica of rank 0 only. Note that we save state to a temporary folder first. Then, it
will be renamed to the formal checkpoint folder after all states are saved.

Parameters
• state (State) – The State object to save to persistent storage.

• sync (bool) – Whether State.sync should be invoked.

adaptdl.collective module

This module contains simple collective communications primitives which operate on arbitrary python objects. It is
meant to be general but non-performant. Only use these primitives if you are synchronizing small objects which can
be efficiently pickled and operated on. For larger objects, use framework-specific functions, such as those provided by
torch.distributed.

The functions in this module should be invoked in the same order across all replicas in the current job. Otherwise,
their behavior is undefined and you may encounter unexpected bugs and errors.

adaptdl.collective.allreduce(value, reduce_fn=<function default_reduce_fn>)
Reduces a value across all replicas in such a way that they all get the final result. Blocks until this function is
invoked by all replicas.

Parameters
• value (object) – The object which will be reduced together with all other replicas.

• reduce_fn (Function) – A reduction function which two objects as arguments, and returns
the resulting reduced object.

Returns
Resulting value after being reduced across all replicas.

Return type
object

Raises
RuntimeError – If this module has not been initialized.

adaptdl.collective.allreduce_async(value, reduce_fn=<function default_reduce_fn>)
Asynchronous version of the allreduce function. Does not block, instead returns a future which can be used to
obtain the result later.

Parameters
• value (object) – The object which will be reduced together with all other replicas.

• reduce_fn (Function) – A reduction function which two objects as arguments, and returns
the resulting reduced object.

Returns
Object from which the result can be obtained later.

Return type
Future
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Raises
RuntimeError – If this module has not been initialized.

adaptdl.collective.broadcast(value)
Broadcasts a value from the replica of rank 0 to all replicas. Blocks until this function is invoked by all replicas.

Parameters
value (object) – The object which will be broadcasted from replica 0. Ignored on all other
replicas.

Returns
The value broadcasted from replica 0.

Return type
object

Raises
RuntimeError – If this module has not been initialized.

adaptdl.collective.initialize(master_addr=None, master_port=None, replica_rank=None,
num_replicas=None)

Initialize this module, must be invoked before calling any other functions. This function will block until it has
been invoked from all replicas.

Parameters
• master_addr – address of the replica with rank 0.

• master_port – free port of the replica with rank 0.

• replica_rank – rank of the current replica.

• num_replicas – total number of replicas.

Raises
RuntimeError – If this module had already been initialized.

adaptdl.collective.teardown()

Teardown this module, will block until this function has been invoked from all replicas.

Raises
RuntimeError – If this module has not been initialized.

adaptdl.env module

This module contains functions for retrieving the values of AdaptDL environment variables, or their defaults if unset.

adaptdl.env.adaptdl_sched_version()

A string which gives the AdaptDL version of scheduler. Determined by the environment variable
ADAPTDL_SCHED_VERSION or None

Returns
AdaptDL version of scheduler, or None.

Return type
str

adaptdl.env.checkpoint_path()

Path to the directory used for saving and loading checkpoints. Determined by the environment variable
ADAPTDL_CHECKPOINT_PATH, or None if unset. Setting this environment variable is required for checkpointing,
and is automatically set in AdaptDL-scheduled clusters.
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Returns
checkpoint path or None.

Return type
str

adaptdl.env.from_ray()

Returns True if the code is being called from Ray

adaptdl.env.job_id()

A string which uniquely identifies the current job in an AdaptDL-scheduled cluster. None if running standalone.

Returns
unique job identifier or None.

Return type
str

adaptdl.env.master_addr()

Network address of the rank 0 replica, required for distributed training. Determined by the environment variable
ADAPTDL_MASTER_ADDR, or 0.0.0.0 if unset.

In AdaptDL-scheduled clusters, this environment variable is unset. The rank 0 replica is discovered dynamically
by querying the supervisor (supervisor_url()).

Returns
address of the rank 0 replica, or 0.0.0.0.

Return type
str

adaptdl.env.master_port()

Available port for the rank 0 replica, required for distributed training. Determined by the environment variable
ADAPTDL_MASTER_PORT, or 0 if unset. Automatically set in AdaptDL-scheduled clusters.

Returns
available port for the rank 0 replica, or 0.

Return type
int

adaptdl.env.num_nodes()

Number of unique nodes being used for the current job. For example, if there are 4 nodes, each running 2
replicas, then this function returns 4. Determined by the environment variable ADAPTDL_NUM_NODES, or is equal
to num_replicas() if unset. Thus, this environment variable only needs to be set if some node runs multiple
replicas. Automatically set in AdaptDL-scheduled clusters.

Returns
number of unique nodes, or the value of num_replicas().

Return type
int

adaptdl.env.num_replicas()

Total number of replicas, required for distributed training. For example, if there are 4 nodes, each running 2
replicas, then this function returns 8. Determined by the environment variable ADAPTDL_NUM_REPLICAS, or 1
if unset. Automatically set in AdaptDL-scheduled clusters.

Returns
total number of replicas, or 1.
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Return type
int

adaptdl.env.num_restarts()

Number of times the current job was restarted. Determined by the environment variable
ADAPTDL_NUM_RESTARTS, or 0 if unset. This value is mainly informational, and is automatically set in
AdaptDL-scheduled clusters.

Returns
number of restarts, or 0.

Return type
int

adaptdl.env.replica_rank()

Rank of the current replica, required for distributed training. Each replica is assigned a unique rank from 0 to K-
1, where K is the total number of replicas. Determined by the environment variable ADAPTDL_REPLICA_RANK,
or 0 if unset. Automatically set in AdaptDL-scheduled clusters.

Returns
rank of the current replica, or 0.

Return type
int

adaptdl.env.share_path()

Path to a directory shared by all AdaptDL job replicas, which can be used by the application, e.g. for storing
downloaded datasets or artifacts. Determined by the environment variable ADAPTDL_SHARE_PATH, or None if
unset. Automatically set in AdaptDL-scheduled clusters.

Returns
shared directory path or None.

Return type
str

adaptdl.env.supervisor_url()

URL of the supervisor in an AdaptDL-scheduled cluster. The address of the rank 0 replica is dynamically dis-
covered via the supervisor, instead of via the ADAPTDL_MASTER_ADDR environment variable.

Returns
URL of the supervisor, or None.

Return type
str

adaptdl.goodput module

class adaptdl.goodput.GoodputFunction(perf_params, grad_params, init_batch_size)
Bases: object

efficiency(batch_size)

evaluate(num_nodes, num_replicas, atomic_bsz, accum_steps)

optimize(num_nodes, num_replicas, max_batch_size=None, atomic_bsz_range=None,
accumulation=False)
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throughput(num_nodes, num_replicas, atomic_bsz, accum_steps)

class adaptdl.goodput.GradParams(sqr, var)
Bases: tuple

property sqr

Alias for field number 0

property var

Alias for field number 1

class adaptdl.goodput.PerfParams(alpha_c, beta_c, alpha_n, beta_n, alpha_r, beta_r, gamma)
Bases: tuple

property alpha_c

Alias for field number 0

property alpha_n

Alias for field number 2

property alpha_r

Alias for field number 4

property beta_c

Alias for field number 1

property beta_n

Alias for field number 3

property beta_r

Alias for field number 5

property gamma

Alias for field number 6

adaptdl.goodput.fit_perf_params(num_nodes, num_replicas, atomic_bsz, accum_step_time,
optim_step_time)

adaptdl.reducer module

class adaptdl.reducer.Future(reducer, key)
Bases: object

result()

class adaptdl.reducer.Reducer(rank, replicas, root_host, root_port)
Bases: object

Simple asynchronous (all)reduce operations on python objects. Assumes all invokations to allreduce, allre-
duce_async, and Future.result happen in the same order across all processes.

allreduce(obj, reduce_fn=<function default_reduce_fn>)

allreduce_async(obj, reduce_fn=<function default_reduce_fn>)

broadcast(obj)
Broadcast a value from replica 0 to all other replicas. Currently uses allreduce with left-projection.

adaptdl.reducer.default_reduce_fn(a, b)
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adaptdl.sched_hints module

adaptdl.sched_hints.post_sched_hints(sched_hints, job_key)

adaptdl.utils module

adaptdl.utils.print_exc(function)
A decorator that wraps the passed in function and prints any exceptions.
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