

    
      
          
            
  
AdaptDL Documentation

AdaptDL is a resource-adaptive deep learning (DL) training and scheduling
framework, and is part of the CASL open source project [https://www.casl-project.ai]. The goal of AdaptDL is to make distributed DL
easy and efficient in dynamic-resource environments such as shared clusters and
the cloud.

AdaptDL consists of two components which can be used together with or separately
from one another:


	adaptdl-sched: A cluster scheduler on Kubernetes optimized for distributed
deep learning training.


	adaptdl: A library for adaptive batch sizes that can efficiently scale
distributed training to many nodes.




Some core features offered by AdaptDL are:


	Elastically schedule distributed DL training jobs in shared clusters.


	Cost-aware resource auto-scaling in cloud computing environments (e.g. AWS).


	Automatic batch size and learning rate scaling for distributed training.




AdaptDL supports PyTorch training programs. TensorFlow support coming soon!


Why AdaptDL?


Efficient Resource Management

The AdaptDL scheduler directly optimizes cluster-wide training performance and
resource utilization, by using a genetic algorithm to periodically optimize
resource allocations for all jobs. Through elastic re-scaling, co-adapting
batch sizes and learning rates, and avoiding network interference, AdaptDL
significantly accelerates shared-cluster training when compared with alternative
schedulers. For details, please see our OSDI’21 research paper [https://www.usenix.org/conference/osdi21/presentation/qiao].

[image: _images/scheduling-performance.png]
In the cloud (e.g. AWS), AdaptDL auto-scales the size of the cluster based on
how well those cluster resources are utilized. AdaptDL automatically
provisions spot instances when available to reduce cost by up to 80%.



Adaptive Batch Size Scaling

Efficient distributed training requires careful selection of the batch size and
learning rate, which can be tricky to find manually. AdaptDL offers automatic
batch size and learning rate scaling, which enables efficient distributed
training without requiring manual effort. To achieve this, AdaptDL measures the
system performance and gradient noise scale [https://arxiv.org/pdf/1812.06162.pdf]
during training, adaptively selects the most efficient batch size, and scales
the learning rate using AdaScale [https://arxiv.org/pdf/2007.05105.pdf].

[image: _images/autobsz-performance.png]


Easy-to-use Elastic API

Making training programs run elastically can be challenging and error-prone.
AdaptDL offers APIs which make it easy to enable elasticity for data-parallel
PyTorch programs. Simply change a few lines of code, without heavy refactoring!

BEFORE:

torch.distributed.init_process_group("nccl")
model = torch.nn.parallel.DistributedDataParallel(model)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=128)
for epoch in range(100):
    ...





AFTER:

adaptdl.torch.init_process_group("nccl")
model = adaptdl.torch.AdaptiveDataParallel(model, optimizer)
dataloader = adaptdl.torch.AdaptiveDataLoader(dataset, batch_size=128)
for epoch in adaptdl.torch.remaining_epochs_until(100):
    ...








Getting Started

AdaptDL consists of a job scheduler and an adaptive training library. They
can be used in multiple ways:


	Scheduling multiple training jobs on a shared Kubernetes cluster or the cloud
(Scheduler Installation).


	Adapting the batch size and learning rate for a single training job
(Standalone Training).


	As a Ray Tune Trial Scheduler
(Tune Trial Scheduler).


	As a single training job running on a Ray AWS cluster
(Ray AWS Launcher)











            

          

      

      

    

  

    
      
          
            
  
Installation

The following pages describe how to deploy the AdaptDL scheduler to manage jobs
in a shared Kubernetes cluster. If you are interested in training in a
standalone setting, see Standalone Training.



	Deploying a MicroK8s Instance
	Installing MicroK8s

	Interacting with MicroK8s

	Next Steps





	Provisioning an EKS Cluster
	Provisioning the Cluster

	Provisioning EFS

	Installing the Cluster Autoscaler

	Installing the NVIDIA Plugin

	(Optional) Registry Access

	Cleaning Up

	Next Steps





	Installing the AdaptDL Scheduler
	Install the AdaptDL Helm Chart

	Next Steps












            

          

      

      

    

  

    
      
          
            
  
Deploying MicroK8s for AdaptDL

This page describes how to deploy a single-node MicroK8s Kubernetes instance
on which AdaptDL can be run. Refer to other pages if you want to run AdaptDL
on an existing Kubernetes cluster, or on an
auto-scaling cluster with EKS.


Note

The instructions on this page assume Ubuntu 18.04 or above with sudo access.




Installing MicroK8s

First, install MicroK8s using Snap:

$ sudo snap install microk8s --classic --channel=1.18/stable





The above command should install a barebones MicroK8s instance locally. Next,
enable dns:

$ sudo microk8s enable dns





Enable gpu and storage:

$ sudo microk8s enable gpu storage





The above command enables pods to utilize GPUs if available, and allows local
storage to be used for AdaptDL training checkpoints.

Initialize Helm, which is a package manager that can later be used to deploy
the AdaptDL scheduler:

$ sudo microk8s enable helm
$ sudo microk8s helm init --stable-repo-url=https://charts.helm.sh/stable
$ sudo helm repo add stable https://charts.helm.sh/stable







Interacting with MicroK8s

Once MicroK8s is installed, you can interact with it via microk8s.kubectl,
in the same way as using kubectl to interact with other Kubernetes
instances:

$ sudo microk8s.kubectl get nodes





Example output:

NAME       STATUS     ROLES    AGE    VERSION
gpu00100   Ready      <none>   10m    v1.18.8





If you prefer to omit sudo, add your user to the microk8s group, and
then re-login to your shell:

$ sudo usermod -a -G microk8s $USER





If you prefer to use kubectl rather than microk8s.kubectl:

$ mkdir -p $HOME/.kube
$ sudo microk8s kubectl config view --raw > $HOME/.kube/config
$ sudo chown -f -R $USER ~/.kube





The above step is recommended when later deploying AdaptDL onto MicroK8s.



Next Steps

Once your MicroK8s instance is installed and running, you can deploy the
AdaptDL scheduler.





            

          

      

      

    

  

    
      
          
            
  
Provisioning EKS for AdaptDL

This page describes how to setup an AWS EKS cluster that auto-scales according
to cluster load. Refer to other pages if you want to run AdaptDL on an
existing Kubernetes cluster, or on an a single node
with MicroK8s.


Note

The instruction on this page assume eksctl, kubectl, helm and
awscli are installed locally. You can follow this guide [https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html]
to install all the tools needed.




Attention

This guide will provision AWS resources which will cost money. As of August
2020, you pay $0.10 per hour for each Amazon EKS cluster that you create.
$0.30 GB-Month for the EFS storage and $0.526 per hour per g4dn.xlarge
instance that you will end up using, starting with one. Note because the
cluster is auto-scaling, additional instances will be spawned only when
needed and you will be charged only for the duration of their lifetimes.




Provisioning the Cluster

You may use the provided manifest to create the cluster. Some configurations
may be changed as per your preferences by downloading and modifying the file.

eksctl create cluster -f https://raw.githubusercontent.com/petuum/adaptdl/master/deploy/eks/adaptdl-eks-cluster-on-demand.yaml





This will provision an elastic EKS cluster with name adaptdl-eks-cluster
with 1 minimum and 4 maximum nodes in the us-west-2 region. All nodes are
on-demand g4dn.xlarge instances with a single GPU each. You can change the
instance type and auto-scaling limits by changing nodeGroups.instanceType,
nodeGroups.minSize, and nodeGroups.maxSize, respectively. You can also
change the cluster name, AWS region of your choice.

Make sure the CLUSTER_NAME and AWS_REGION environment variables reflect
the correct values after this step, for example:

export CLUSTER_NAME=adaptdl-eks-cluster
export AWS_REGION=us-west-2







Provisioning EFS

AdaptDL depends on a distributed filesystem like EFS to save and load
checkpoints during training. You may follow the instructions from this website [https://www.eksworkshop.com/beginner/190_efs/launching-efs/] to provision an
EFS volume for your cluster.

Next, install the EFS provisioner Helm chart. Make sure you have set the
FILE_SYSTEM_ID environment variable according to the linked instructions.

helm repo add stable https://kubernetes-charts.storage.googleapis.com/

helm repo update

helm install stable/efs-provisioner \
--set efsProvisioner.efsFileSystemId=$FILE_SYSTEM_ID \
--set efsProvisioner.awsRegion=$AWS_REGION \
--generate-name







Installing the Cluster Autoscaler

helm repo add autoscaler https://kubernetes.github.io/autoscaler

helm repo update

helm install autoscaler/cluster-autoscaler-chart \
--set autoDiscovery.clusterName=$CLUSTER_NAME \
--set awsRegion=$AWS_REGION \
--generate-name





To verify that cluster-autoscaler has started, run:

kubectl --namespace=default get pods -l "app.kubernetes.io/name=aws-cluster-autoscaler-chart"





Should show the Cluster Autoscaler pod as Running



Installing the NVIDIA Plugin

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.6.0/nvidia-device-plugin.yml







(Optional) Registry Access

If you will be using AdaptDL’s insecure registry, you will need to add a new
rule to the security group associated with the nodes of the cluster. You may
need help from your AWS administrator to perform this step.

SECURITY_GROUP=$(aws cloudformation describe-stack-resources --stack-name \
eksctl-$CLUSTER_NAME-nodegroup-ng-1 --query \
'StackResources[?LogicalResourceId == `SG`].[PhysicalResourceId]' --output text)

aws ec2 authorize-security-group-ingress --group-id $SECURITY_GROUP \
--protocol tcp --port 32000 --cidr 0.0.0.0/0







Cleaning Up

Once you are done with the cluster, you can clean up all AWS resources with:

eksctl delete cluster --name $CLUSTER_NAME

for target in `aws efs describe-mount-targets --file-system-id $FILE_SYSTEM_ID --query 'MountTargets[].MountTargetId' --output text`; \
do aws efs delete-mount-target --mount-target-id $target; done

aws efs delete-file-system --file-system-id $FILE_SYSTEM_ID







Next Steps

Once your EKS cluster is provisioned and running, you can deploy the
AdaptDL scheduler.





            

          

      

      

    

  

    
      
          
            
  
Installing the AdaptDL Scheduler

This page shows how to install the AdaptDL scheduler on an existing Kubernetes
instance. If you do not have a running Kubernetes instance, you may refer to
other pages to deploy a single-node MicroK8s instance,
or to provision an auto-scaling cluster on EKS.


Note

The following instructions assume kubectl (installation instructions [https://kubernetes.io/docs/tasks/tools/install-kubectl/]) and helm (installation instructions [https://helm.sh/docs/intro/install/]) are installed
locally and configured with administrator access to an existing Kubernetes
instance.




Install the AdaptDL Helm Chart

The AdaptDL scheduler can be installed in just one command using Helm:

$ helm install adaptdl adaptdl-sched --repo https://github.com/petuum/adaptdl/raw/helm-repo \
  --namespace adaptdl --create-namespace --set docker-registry.enabled=true





The above command installs Kubernetes deployments for the AdaptDL scheduler
service, as well as a Docker registry. The Docker registry is used to store
intermediate Docker images when submitting jobs with the AdaptDL CLI.


Danger

The Docker registry installed with the AdaptDL scheduler is insecure.
Please install an alternative secure registry for serious use!
The included Docker registry may be disabled by omitting the
--set docker-registry.enabled=true option, and then the AdaptDL CLI may
be configured to use the alternative secure registry.




Note

If installing AdaptDL together with the insecure registry, you may need to
first install the Helm stable repository with the helm repo add stable
https://charts.helm.sh/stable command.



Check that the AdaptDL scheduler and Docker registry are running:

$ kubectl get pods -n adaptdl





Example output:

adaptdl-adaptdl-sched-7d8b689f45-9ds8h   3/3     Running            0          2m37s
adaptdl-registry-7f45598964-t8df6        1/1     Running            0          2m37s







Next Steps

Once the AdaptDL scheduler is installed and running, you may run AdaptDL
jobs using the AdaptDL CLI.





            

          

      

      

    

  

    
      
          
            
  
AdaptDL Command-line Interface

The following pages describe how to use AdaptDL CLI to submit and manage jobs
in an AdaptDL-scheduled cluster. If you are instead interested in training in a
standalone setting, see Standalone Training.


Note

The following instructions assume you have already installed the AdaptDL
scheduler on Kubernetes. If you have not, see Installation.





	Submitting a Simple Job
	Installation

	Writing a Simple Program

	Writing a Dockerfile

	Configuring the Job

	Submitting the Job

	Monitoring the Job

	Retrieving Output Files

	Deleting the Job

	(Advanced) External Registry





	Using TensorBoard
	Modifying Your Code

	Deploying Tensorboard

	Attaching TensorBoard

	Accessing TensorBoard












            

          

      

      

    

  

    
      
          
            
  
Submitting a Simple Job

This page is an introduction to running AdaptDL jobs using a simple “Hello,
world!” program. The goal is to show the basics of creating and interacting
with AdaptDL jobs. For an introduction to modifying existing PyTorch code to
use AdaptDL, please see AdaptDL with PyTorch.


Installation

python3 -m pip install adaptdl-cli







Writing a Simple Program

For the purpose of this guide, you will want a simple python script that
produces output to adaptdl.env.share_path(), the directory used for
your job for storing general files.

For example, you may copy the following code (into hello_world/hello_world.py):

import adaptdl.env
import os
import time

print("Hello, world!")

with open(os.path.join(adaptdl.env.share_path(), "foo.txt"), "w") as f:
    f.write("Hello, world!")

time.sleep(100)





Please note that stdout is only accessible while a job is still running.
Therefore, the time.sleep(100) call is important for this tutorial.



Writing a Dockerfile

In order to run your application code, the job containers need access to
the code directly. A simple method is to create a docker image containing
the application.

Currently the adaptdl cli requires you to be able to push
to and the cluster to be able to pull from a docker registry. This may
be dockerhub, or it may be your own private docker registry. Please
ensure that that is set up before proceeding.

Copy the following docker file into hello_world/Dockerfile:

FROM python:3.7-slim
RUN python3 -m pip install adaptdl

COPY hello_world.py /root/hello_world.py

ENV PYTHONUNBUFFERED=true






Tip

If the Dockerfile is not written carefully, the Docker build step can take a
long time. Make sure to follow the best practices when writing your
Dockerfile so your builds are as fast as possible:


	Exploiting caching in Dockerfile to re-use layers and speed up builds [https://pythonspeed.com/articles/docker-caching-model/]


	Using .dockerignore to minimize the size of your docker context. [https://devopsheaven.com/docker/dockerignore/2018/04/25/using-dockerignore.html]




In particular, you should (almost) always have a .dockerignore file that
contains .git and other large files/directories which are not used in
your containers.





Configuring the Job

AdaptDL jobs are specified as Kuberenetes Resource. The following yaml file defines
the job specification for your hello world application:

Example (in hello_world/adaptdljob.yaml):

apiVersion: adaptdl.petuum.com/v1
kind: AdaptDLJob
metadata:
  generateName: hello-world-
spec:
  template:
    spec:
      containers:
      - name: main
        command:
        - python3
        - /root/hello_world.py







Submitting the Job

Run the following AdaptDL cli command from your client.

adaptdl submit hello_world






Note

If you are using Docker for Mac with AdaptDL’s built-in insecure registry, the first run of
adaptdl submit may fail with an error similar to:

Get https://host.docker.internal:59283/v2/: x509: certificate signed by unknown authority





You may need to restart Docker, and adaptdl submit should work thereafer.



This will create the AdaptDL Kubernetes job object for your application. Once this is created,
the AdaptDL scheduler will recognize the job and schedule it for execution. Please note that for
this command to work, the docker file created in step 3 must be located in hello_world/Dockerfile
and the yaml created in step 4 must be located in hello_world/adaptdljob.yaml.



Monitoring the Job

Once the job object has been created, you can find more information about the job using

adaptdl ls





This should produce some output similar to

Name                                                             Status     Start(UTC)    Runtime  Rplc  Rtrt
hello-world-kgjsc                                                Running    Aug-24 18:47  1 min    1     0





Once the Status is listed as Running and not Pending, then the AdaptDL scheduler has
created pods for your AdaptDL job. Use the following command to find out more details about the pods:

kubectl get pods





This should produce an output that looks like

NAME                                                         READY   STATUS     RESTARTS   AGE
adaptdl-adaptdl-sched-856cc685c4-hhdks                       3/3     Running    0          8h
hello-world-kgjsc-a7fe6b49-e673-11ea-a27e-061e69fb5c39-0-0   1/1     Running    0          20s





Note that this gets all of the pods in the default namespace, including the scheduler. To restrict this to just the pods
created for your job, use kubectl get pods | grep hello-world.

When the phase is listed as Running, as opposed to ContainerCreating, then you can get the stdout and stderr logs
via the following, (replacing <pod-name> with the name value you got from kubectl get pods):

kubectl logs <pod-name>





This should produce output of Hello, world!.

Please note that this method of getting stdout and stderr output requires the pod to still exist. However,
when an AdaptDL job finishes or rescales, the worker pods are deleted. For more durable logging, it is advised to
write to a file.



Retrieving Output Files

Use the following to copy result files to your client machine. Please replace <adaptdl-job> with the name
value from the output of adaptdl ls in step 10:

adaptdl cp <adaptdl-job>:/adaptdl/share/foo.txt foo.txt





foo.txt on your local client should then contain hello world



Deleting the Job

Delete the job with kubectl: kubectl delete adaptdljob <adaptdl-job>. Again, replace the name parameter with the one
from before. This will delete the AdaptDL kubernetes object from your job, which will also delete any running pods or other
attached resources. Please note that this may cause files the job has written to to no longer be available.



(Advanced) External Registry

If possible, we recommend using a secure external Docker registry instead of
the default insecure registry installed along with the AdaptDL scheduler. To do
this, you’ll need to export two environment variables to let AdaptDL know the
full reponame to use, say registry.example.com/adaptdl-submit, along with
registry credentials mysecret. Refer to this website [https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line]
for how to create one.

export ADAPTDL_SUBMIT_REPO=registry.example.com/adaptdl-submit
export ADAPTDL_SUBMIT_REPO_CREDS=mysecret





Then do docker login in with the registry credentials.





            

          

      

      

    

  

    
      
          
            
  
Integrating your AdaptDL job with TensorBoard

Tensorboard [https://www.tensorflow.org/tensorboard] provides a simple way to collect and visualize model performance, statistics, and weights. AdaptDL provides integration with tensorboard across replicas via AdaptDL’s command line interface.

AdaptDL provides a way to deploy a Tensorboard instance on your kubernetes cluster that your AdaptDL jobs can interact with. This tutorial demonstrates how to have your AdaptDL jobs write to Tensorboard and how to access the Tensorboard UI.


Modifying Your Code

The AdaptDL CLI provides the environment variable
ADAPTDL_TENSORBOARD_LOGDIR as the log directory for AdaptDL
TensorBoard deployments. Use
$ADAPTDL_TENSORBOARD_LOGDIR/<job-name> for the particular job you
are running via the following code:

os.path.join(os.getenv("ADAPTDL_TENSORBOARD_LOGDIR"),
                       adaptdl.env.job_id())





Following AdaptDL with PyTorch, the following changes are made to the test function
to write to tensorboard:

with stats.synchronized():
    test_loss = stats["test_loss"] / len(test_loader.dataset)
    correct = stats["correct"]
    tensorboard_dir = os.path.join(os.getenv("ADAPTDL_TENSORBOARD_LOGDIR", "/tmp"),
                                   adaptdl.env.job_id())
    with SummaryWriter(tensorboard_dir) as writer:
        writer.add_scalar("Test/Loss", test_loss, epoch)
        writer.add_scalar("Test/Accuracy", 100. * correct / len(test_loader.dataset), epoch)





See mnist_tensorboard.py for more context.



Deploying Tensorboard

Launch the AdaptDL TensorBoard deployment with

adaptdl tensorboard create my-tensorboard





This will create a deployment running tensorboard and a service to
expose tensorboard’s port.



Attaching TensorBoard

When creating your AdaptDL job via the adaptdl cli, use the flag
--tensorboard my-tensorboard. This will attach the necessary
persistent volume claims and environment variables to your AdaptDL job.

For example, to launch the Tensorboard MNIST example from above, run the following in your command line.

adaptdl submit . --tensorboard my-tensorboard -d tutorial/Dockerfile -f tutorial/adaptdljob.yaml







Accessing TensorBoard

To access the GUI of your TensorBoard instance running in Kubernetes, you can
start a proxy to it locally:

$ adaptdl tensorboard proxy my-tensorboard -p 8080
Proxying to TensorBoard instance my-tensorboard at http://localhost:8080





The proxy will keep running until you manually stop it by sending an interrupt.
Now, you can view your TensorBoard instance by pointing your favorite browser
to http://localhost:8080.





            

          

      

      

    

  

    
      
          
            
  
AdaptDL with PyTorch

This page describes the steps needed to modify a simple MNIST example [https://github.com/pytorch/examples/blob/49ec0bd72b85be55579ae8ceb278c66145f593e1/mnist/main.py]
to use AdaptDL. Please see mnist_original.py
for the original version and tutorial/mnist_step_<#>.py for the resulting changes
from each step number of this tutorial.``diff`` may be useful here to compare versions.


Initializing AdaptDL

Once the training model model with optimizer optimizer and
(optional) learning rate scheduler scheduler have been created,
register all three with the following commands:

adaptdl.torch.init_process_group("nccl" if torch.cuda.is_available()
                                 else "gloo")
model = adaptdl.torch.AdaptiveDataParallel(model, optimizer, scheduler)





Please note that init_process_group must be called before the
AdaptiveDataParallel object is created

In the MNIST tutorial example (mnist_step_1.py), the changes will look like the following:

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
adaptdl.torch.init_process_group("nccl" if torch.cuda.is_available()
                                 else "gloo") # Changed
model = adaptdl.torch.AdaptiveDataParallel(model, optimizer, scheduler) # Changed







Dataloading

AdaptDL requires you to use adaptdl.torch.AdaptiveDataLoader. This
will require you to first have your dataset as a torch dataset
object [https://pytorch.org/docs/stable/data.html#dataset-types].
From there, the AdaptiveDataLoader supports the same arguments as the
standard PyTorch DataLoader
class [https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader].
Furthermore, the batchsize is not guaranteed to be the same as the
batch_size argument. However, if batchsize autoscaling is not
enabled (see part 3), then the global batchsize will be very close that
provided via batch_size.

In the MNIST example (mnist_step_2.py), this is a matter of changing the dataloaders from

dataset1 = datasets.MNIST('../data', train=True, download=True,
                          transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
                          transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, batch_size=64,
                                           num_workers=1, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset2, batch_size=64,
                                          num_workers=1, shuffle=True)





to

dataset1 = datasets.MNIST('../data', train=True, download=True,
                          transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
                          transform=transform)
train_loader = adaptdl.torch.AdaptiveDataLoader(dataset1, drop_last=True, batch_size=64,
                                               num_workers=1, shuffle=True)
test_loader = adaptdl.torch.AdaptiveDataLoader(dataset2, batch_size=64,
                                              num_workers=1, shuffle=True)





Setting drop_last=True allows the dataloader to properly deal with remainders when
dividing the dataset by the number of replicas



Adaptive Batch Size

Enable AdaptDL to automatically scale the batch size based off of
throughput and gradient statistics via

data_loader.autoscale_batch_size(
    max_global_batchsize,
    local_bsz_bounds=(min_local_batchsize, max_local_batchsize))





Note: this will allow the batchsize to change dynamically in training
via Adascale. Also note that this will generally require your optimizer
to be SGD.

In the context of the MNIST example (mnist_step_3.py), the following change will need to be made:

train_loader = adaptdl.torch.AdaptiveDataLoader(dataset1, drop_last=True, **kwargs)
test_loader = adaptdl.torch.AdaptiveDataLoader(dataset2, **kwargs)

train_loader.autoscale_batch_size(1028, local_bsz_bounds=(32, 128))





Please note that this call is optional, but required to allow the global batchsize to change dynamically over time.



Training Loop

The core training loop requires the following change from:

for epoch in range(1, args.epochs + 1):
    train(args, model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)
    scheduler.step()





to

for epoch in adaptdl.torch.remaining_epochs_until(args.epochs): # Changed
    train(args, model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)
    scheduler.step()





The call adaptdl.torch.remaning_epochs_until(args.epochs) will resume the epochs and batches
progressed when resuming from checkpoint after a job has been rescaled. See (mnist_step_4.py).



Statistics Accumulation

To calculate useful metrics like loss or accuracy across replicas, use the
adaptdl.torch.Accumulator class, which is a dict-like object that sums across replicas
when synchronized is called.
However, outside of the stats.synchronized() context, get operations
are not supported. Furthermore, calling stats.synchronized() forces
blocking for synchronization across all replicas.

Whereas before collecting test data would look like:

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))





With AdaptDL statistics accumulation, it would look like:

def test(model, device, test_loader):
    model.eval()
    stats = adaptdl.torch.Accumulator() # Changed in step 5
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # CHANGED:
            stats["test_loss"] += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            stats["correct"] += pred.eq(target.view_as(pred)).sum().item()

    with stats.synchronized(): # Changed in step 5
        test_loss = stats["test_loss"] / len(test_loader.dataset) # Changed
        correct = stats["correct"] # Changed in step 5

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))





See (mnist_step_5.py) for the full changes.





            

          

      

      

    

  

    
      
          
            
  
Standalone Training

This tutorial shows how to run AdaptDL training code in a standalone setting,
outside of an AdaptDL-scheduled cluster. Standalone training has no dependency
on deploying Kubernetes or the AdaptDL scheduler. It can be useful for:


	Distributed training with adaptive batch sizes in a dedicated cluster.


	Local testing the training code before submitting to an AdaptDL cluster.





Local Training

Any training code that uses AdaptDL APIs can be run locally as a single
process. All that’s needed is to install the adaptdl package, and run the
code as a regular python program.

$ python3 -m pip install adaptdl





As an example, we shall run the simple MNIST training script
(mnist_step_5.py).

$ python3 mnist.py





Output:

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 36405
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:39345?rank=0&world_size=1
INFO:adaptdl.torch:torch.distributed initialized
INFO:adaptdl.torch.epoch:starting at epoch 0
Train Epoch: 0 [0/60000 (0%)]   Loss: 2.318445
Train Epoch: 0 [640/60000 (1%)] Loss: 1.647522
...
...
...
Train Epoch: 13 [58880/60000 (98%)]  Loss: 0.003577
Train Epoch: 13 [59520/60000 (99%)]  Loss: 0.034688

Test set: Average loss: 0.0267, Accuracy: 9911/10000 (99%)







Manual Checkpoint-Restart

When a training program is running locally, a checkpoint can be triggered by
sending an interrupt (CTRL-C in most terminals). The environment variable
ADAPTDL_CHECKPOINT_PATH specifies where the checkpoint should be located.

$ mkdir mnist-checkpoint
$ ADAPTDL_CHECKPOINT_PATH=mnist-checkpoint python3 mnist.py





Output (after sending CTRL-C during training):

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 51067
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:24997?rank=0&world_size=1
INFO:adaptdl.torch:torch.distributed initialized
INFO:adaptdl.torch.epoch:starting at epoch 0
Train Epoch: 0 [0/60000 (0%)]    Loss: 2.318445
Train Epoch: 0 [640/60000 (1%)]  Loss: 1.647522
...
...
...
Train Epoch: 7 [30080/60000 (50%)]      Loss: 0.009690
Train Epoch: 7 [30720/60000 (51%)]      Loss: 0.010559
^CINFO:adaptdl._signal:Got SIGINT, exiting gracefully... Send signal again to force exit.
INFO:adaptdl._signal:Got SIGINT, exiting gracefully... Send signal again to force exit.





Training can be resumed by running the script with the same checkpoint path.

$ ADAPTDL_CHECKPOINT_PATH=mnist-checkpoint python3 mnist.py





Output:

WARNING:adaptdl.reducer:Could not connect to root, trying again...
INFO:adaptdl.reducer:Master waiting for connections on 0
INFO:adaptdl.reducer:rank 0 connecting to 0.0.0.0 on port 45371
INFO:adaptdl.torch:Initializing torch.distributed using tcp://0.0.0.0:23678?rank=0&world_size=1
INFO:adaptdl.torch:torch.distributed initialized
INFO:adaptdl.torch.epoch:starting at epoch 7
Train Epoch: 7 [0/60000 (0%)]   Loss: 0.070648
Train Epoch: 7 [640/60000 (2%)] Loss: 0.068212
...
...
...
Train Epoch: 13 [58880/60000 (98%)]     Loss: 0.081517
Train Epoch: 13 [59520/60000 (99%)]     Loss: 0.006973

Test set: Average loss: 0.0281, Accuracy: 9913/10000 (99%)





Whenever possible, it’s recommended to test the training code locally in this
way before submitting it to an AdaptDL-scheduled cluster.



Distributed Training

Training code that uses AdaptDL APIs can also be run on a distributed cluster,
without requiring the AdaptDL scheduler. In this setting, the training job will
run using the same number of replicas until it finishes, or until a checkpoint
is manually triggered. Although the number of replicas is fixed, standalone
distributed training can still benefit from the automatic batch size and
learning rate scaling offered by AdaptDL.

The following environment variables need to be set for every replica:


	ADAPTDL_MASTER_ADDR: network address of the node running the rank 0
replica, must be accessible from all other replicas.


	ADAPTDL_MASTER_PORT: available port on the node running the rank 0
replica, must be accessible from all other replicas.


	ADAPTDL_NUM_REPLICAS: total number of replicas.


	ADAPTDL_REPLICA_RANK: integer rank from 0 .. K-1 for each replica, where
K is the total number of replicas.




Assuming two nodes with hostnames node-0 and node-1, on node-0:

$ ADAPTDL_MASTER_ADDR=node-0 ADAPTDL_MASTER_PORT=47000 \
  ADAPTDL_NUM_REPLICAS=2 ADAPTDL_REPLICA_RANK=0 python3 mnist.py





And on node-1:

$ ADAPTDL_MASTER_ADDR=node-0 ADAPTDL_MASTER_PORT=47000 \
  ADAPTDL_NUM_REPLICAS=2 ADAPTDL_REPLICA_RANK=1 python3 mnist.py





A checkpoint can be triggered by sending an interrupt to any of the replicas.
The replica with rank 0 will save the checkpoint to the path specified by the
ADAPTDL_CHECKPOINT_PATH environment variable, and then all replicas will
exit.

Training can be resumed from the checkpoint using any number of replicas.
However, each replica will need to be able to access the saved checkpoint. This
means the checkpoint should be saved to a shared distributed filesystem such as
NFS, or be manually copied to each node before resuming training.





            

          

      

      

    

  

    
      
          
            
  
Using the Adaptive Tune Trial Scheduler

This is a tutorial on using AdaptDL as a Tune Trial Scheduler. We’ll go through
an example that uses HyperOpt to tune hyperparameters like the learning rate,
momentum and initial batch size. The batch size and number of replicas will be
automatically adjusted by AdaptDL throughout the lifetimes of the trials so as
to efficiently and fairly share the resources of the Ray cluster.

We’ll be relying on the PyTorch DistributedTrainable Tune API documented
here [https://docs.ray.io/en/latest/tune/api_docs/trainable.html#distributed-torch].


Setup


	Install the required packages
pip install -U adaptdl-ray hyperopt


	Start the ray cluster.






Incorporating the AdaptDL API

In order to make use of the Adaptive functionality, we will need to change the
trainable to include the AdaptDL API.

We don’t change the model definition and test and train functions

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        # In this example, we don't change the model architecture
        # due to simplicity.
        self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
        self.fc = nn.Linear(192, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 3))
        x = x.view(-1, 192)
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


# Change these values if you want the training to run quicker or slower.
EPOCH_SIZE = 512
TEST_SIZE = 256


def train(model, optimizer, train_loader):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        # We set this just for the example to run quickly.
        if batch_idx * len(data) > EPOCH_SIZE:
            return
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()


def test(model, data_loader):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(data_loader):
            # We set this just for the example to run quickly.
            if batch_idx * len(data) > TEST_SIZE:
                break
            data, target = data.to(device), target.to(device)
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
        else:
            return 0
    return correct / total





The trainable function train_mnist needs to change though.

+import adaptdl.torch as adl
+
 def train_mnist(config: Dict, checkpoint_dir: Optional[str] = None):
     # Data Setup
     mnist_transforms = transforms.Compose(
         [transforms.ToTensor(),
          transforms.Normalize((0.1307, ), (0.3081, ))])

-    train_loader = DataLoader(datasets.MNIST("~/data",
+    train_loader = adl.AdaptiveDataLoader(datasets.MNIST("~/data",
         train=True, download=True, transform=mnist_transforms),
         batch_size=64,
         shuffle=True)

-    test_loader = DataLoader(
+    test_loader = adl.AdaptiveDataLoader(
         datasets.MNIST("~/data", train=False, transform=mnist_transforms),
         batch_size=64,
         shuffle=True)
@@ -21,8 +23,9 @@

     model = ConvNet()
     model.to(device)
-    model = DistributedDataParallel(model)
+    model = adl.AdaptiveDataParallel(model, optimizer)

-    for i in range(10):
+    for epoch in adl.remaining_epochs_until(config.get("epochs", 10)):
         train(model, optimizer, train_loader)
         acc = test(model, test_loader)
         # Send the current training result back to Tune





The changes essentially make the dataloaders and model elastic and restart-safe
thus adding AdaptDL functionality. Now we need to use the the AdaptDL trial
scheduler which can actually make decisions based on available cluster
resources and trial characteristics.

We first create a trainable (class) and a search space for HyperOpt. We call
tune.run and pass in AdaptDLScheduler as the trial scheduler for all the
trials. The AdaptDLScheduler will first try to use GPUs on the Ray cluster.
If it finds none, it will use CPUs to run the trials.

Full example can be found at hyperopt_example.py [https://github.com/petuum/adaptdl/ray/adaptdl_ray/examples/hyperopt_example.py].

To run the example, simply run it from command line

$ python3 hyperopt_example.py

...
== Status ==
 Current time: 2021-10-26 12:55:14 (running for 00:04:55.09)
 Memory usage on this node: 2.1/31.2 GiB
 Using AdaptDL scheduling algorithm.
 Resources requested: 0/8 CPUs, 0/0 GPUs, 0.0/18.43 GiB heap, 0.0/9.21 GiB objects
 Result logdir: /tmp
 Number of trials: 4/4 (4 TERMINATED)
 +-------------------------------+------------+---------------------+----------+--------+------------------+
 | Trial name                    | status     | loc                 |      acc |   iter |   total time (s) |
 |-------------------------------+------------+---------------------+----------+--------+------------------|
 | AdaptDLTrainable_7_2_cd64740f | TERMINATED | 192.168.1.196:20687 | 0.957576 |    102 |          92.0071 |
 | AdaptDLTrainable_1_2_cd64740e | TERMINATED | 192.168.1.196:21408 | 0.930804 |    102 |         115.433  |
 | AdaptDLTrainable_1_2_cd647410 | TERMINATED | 192.168.1.196:21407 | 0.953125 |    102 |          75.8803 |
 | AdaptDLTrainable_5_2_ceeea272 | TERMINATED | 192.168.1.196:21612 | 0.872396 |    102 |         102.775  |
 +-------------------------------+------------+---------------------+----------+--------+------------------+

 Best trial config: {'bs': 960, 'epochs': 100, 'lr': 0.010874198064009714, 'momentum': 0.5627724615056127}
 Best trial mean_accuracy: 0.8723958333333334





The trial names in the end can be interpreted as
AdaptDLTrainable_$num_replicas_$num_restarts_$trial_id. Trials can expand or
shrink based on the decisions of the AdaptDL optimizer and this gets reflected
through their names.





            

          

      

      

    

  

    
      
          
            
  
Adaptdl on Ray AWS

The executable adaptdl_on_ray_aws allows you to run an AdaptDL job on an AWS-Ray cluster.
The intention of this module is to allow you to get AdaptDL jobs working quickly, without the need to deploy kubernetes, and you to use Ray’s cluster rescaling with AdaptDL’s worker autoscaling.


Usage


Modifications to your training code

In order for your code to run, your training code will need to use AdaptDL. Please follow this tutorial for more information.

Your code should follow these properties:


	You do not need to make any calls to Ray


	Your code will also need to be able to run from the command line


	The code can take can take command line arguments via sys.argv and argparse


	The code is run as __main__


	Local imports from the same directory as code.py are supported






Deploying a Ray cluster on AWS EC2

You will need a ray cluster already deployed. Please see these instructions [https://docs.ray.io/en/latest/cluster/cloud.html] and tutorial [https://medium.com/distributed-computing-with-ray/a-step-by-step-guide-to-scaling-your-first-python-application-in-the-cloud-8761fe331ef1] for configuring and launching a ray cluster.

When creating the cluster, you will need configure the following:


	A dockerfile with these installed:
* The pip requirements in ray/aws/requirements.txt
* A working installation of pytorch-gpu
* Whatever other pip dependencies you may require


	Sufficient disk space for the above docker image, and whatever disk space you may need to run your code


	Some maximum number of worker nodes




See examples/cluster_config.yaml for an example of the cluster.

To ensure that the ndoes have enough space for Docker to use, you will need to include something like the following BlockDeviceMapping configuration in all of the nodes:

node_config:
  InstanceType: <your instance type>
  BlockDeviceMappings:
    - DeviceName: /dev/sda1
      Ebs:
        VolumeSize: 100 #  Feel free to change this value





Just creating the EBS volume will not make it available for docker. You will also need to format and mount the volume as part of the initialization commands:

initialization_commands:
  - sudo usermod -aG docker $USER
  - sudo mkdir /docker_volume
  - sudo mkfs -t xfs /dev/nvme1n1
  - sudo mount /dev/nmve1n1 /docker_volume -w
  - sudo dockerd --data-root /docker_volume &





If you find that your code does not have enough access to disk space, you can also mount an external volume (as provisioned above) to the runtime containers via:

docker:
  image: <your-image-name>
  run_options:
  - -v '/<your-external-volume>:/<the-path-in-the-container>





Make sure that the permissions for the external volume are set properly.



Running your code

Once the cluster has been deployed, you will need the address and port of the cluster head. Generally, this will be of the form <head-node-ip>:10001. Make sure that you have access to that port via the AWS subnet and inbound rules.

On your local machine, make sure to install the pip package for adaptdl_ray. This package includes the launcher script, and will generally install it in /usr/local/bin/adaptdl_on_ray_aws.

If you have some AdaptDL training code runnable at code.py via python3 code.py <command-line-args>, you can run the training code on Ray via

./usr/local/bin/adaptdl_on_ray_aws -u "ray://head-node-ip:10001" -f code.py -m <maximum-number-of-workers> --cpus <cpus-per-worker> --gpus <gpus-per-worker> -- <command-line-args>

If your local version of Python does not match the cluster’s, Ray will not work. In this case, one option is to run the command within a Docker container. Be sure to mount your code directory in the container, e.g. via -v.



Retrieving your trained model

In order to retrieve the result of your training code, you will need to manually save it to some external store. For example, you could write it to S3, or you could mount an EFS store to the cluster, and write it to that. See the Advanced Usage for more details on using EFS.




Example

To run the example code found in examples/pytorch-cifar/main.py, do the following:


	Install the AWS CLI and authenticate.


	Inside the example/ray/aws directory, run ray up -y cluster.yaml -v. Note: running this step will create an AWS EC2 cluster, which will cost money


	Keep track of the ip and port ray up returns.


	Install Docker or the exact Python version used by your cluster. You can determine the python version by running ray attach <cluster-config-file, and then running Python.


	Still inside example/ray/aws, run docker run <docker version> python3 adaptdl_ray.py -f main.py -m 3 -u ray://<ip>:<port> -- -autoscale-bsz. If you are using Python. then install the requirements in ray/aws/requirements.txt and run ./usr/local/bin/adaptdl_on_ray_aws -f main.py -m 3 -u ray://<ip>:<port> -- -autoscale-bsz.






Advanced Usage


Spot instances

AdaptDL on Ray AWS supports spot instances for the ray cluster. Each of the workers will listen to the for the spot instance termination notification. If a node is scheduled to be deleted, a checkpoint will be taken and the job will be rescaled to exclude and find a replacement for that node.



Dealing with Large Datasets

As workers can be rescheduled to fresh nodes, downloading large datasets to each worker can be expensive. For example, if a worker downloads data for 20 minutes when it is scheduled to a new node, then the other workers will be idle for 20 minutes as well, even if they already have the data. This is exacerbated if the autoscaler gradually increases the number of workers.

There are several options to deal with this:


	Use Amazon S3 with an S3Dataset [https://aws.amazon.com/blogs/machine-learning/announcing-the-amazon-s3-plugin-for-pytorch/].


	Use EFS to share the data between the nodes






Using S3

One difference with using an S3 Dataset in the Ray cluster versus on your local machine is ensuring that all of the nodes have the proper permissions. Please follow these instructions [https://docs.ray.io/en/latest/cluster/aws-tips.html?highlight=s3#configure-worker-nodes-to-access-amazon-s3]



Using EFS

EFS [https://aws.amazon.com/efs/] allows you to use a distributed filesystem with your EC2 cluster. To begin, you will need to create an EFS instance. Once that is done, use the setup_commands listed here [https://docs.ray.io/en/master/cluster/aws-tips.html?highlight=efs#using-amazon-efs] to attach your EFS instance to the nodes.

Please note that using EFS will incur additional costs.



Imports

If you need Python modules that are local to your machine but not located in the same directory as your main script, set --working-dir to a directory that contains the main script and all the Python modules. The argument to -f/--file should then be the path to the main script relative to the argument to --working-dir.



Timeouts

There are two conditions where the job controller will need to wait for some reponse. In order to prevent a lack of response from permamently stopping the job, there are timeouts.

First, when the workers are terminated in order to perform a rescaling, the controller will wait to recieve a checkpoint object of the training state from worker 0. If the controller does not receive a checkpoint by the amount of time specified in --checkpoint-timeout (default 120 seconds), then the controller will use a previous version of the checkpoint, or restart from 0, if a previous checkpoint does not exist. Note that spot instances have around a 2 minute warning for termination.

Second, when the cluster is rescaling to more workers, it can take some time for the new workers to be ready. In addition, spot instances requests may never be fulfilled if their bid price is too low. The controller therefore waits for some time, up to the amount specified in --cluster-rescale-timeout (default 60), for the new nodes to be provisioned and ready. If the nodes are not ready by that time, it schedules up to the maximum supported by the current cluster. Please note that the new nodes need to download the Docker image set in the cluster config. As these images can be large, it may take 5-10 minutes for new nodes to be available.






            

          

      

      

    

  

    
      
          
            
  
adaptdl package


Subpackages



	adaptdl.torch package
	Submodules
	adaptdl.torch.accumulator module

	adaptdl.torch.data module

	adaptdl.torch.epoch module

	adaptdl.torch.gradient_noise_scale module

	adaptdl.torch.iterator module

	adaptdl.torch.parallel module

	adaptdl.torch.scaling_rules module















Submodules



	adaptdl.checkpoint module

	adaptdl.collective module

	adaptdl.env module

	adaptdl.goodput module

	adaptdl.reducer module

	adaptdl.sched_hints module

	adaptdl.utils module









            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch package


	
class adaptdl.torch.Accumulator(*args, **kwargs)

	Bases: collections.abc.MutableMapping

This class helps aggregate simple statistics across all replicas in the
current job, and across any number of checkpoint-restarts. Can be used to
compute metrics like loss and accuracy, synchronized across each replica.

Accumulators imitate python dictionaries, but with a few key differences
described below. Primarily, its usage and behavior depend on whether it is
set to accumulation mode or to synchronized mode.


	Accumulation mode: the accumulator is being updated on all
replicas. Operations like accum["key"] += val or
accum.update(key=val) will aggregate the updates locally on each
replica, which are lazily synchronized in the background (either upon a
checkpoint or a switch to synchronized mode). Each replica may make
different updates, which are summed together when synchronized. While
accumulation mode is enabled, all read operations on the accumulator
will behave as if they were performed on an empty dict, ie.
len(accum) will always return 0. By default, all accumulators
are set to accumulation mode.


	Synchronized mode: the accumulator contains the same data on every
replica, and the application must ensure that all write operations are
exactly the same across all replicas. While in synchronized mode, the
accumulator may be used as if it were a native python dict, and all
read/write operations are supported. Accumulator.synchronized()
may be used to enter synchronized mode. Upon entering synchronized
mode, the accumulator will automatically sum all updates from all
replicas to ensure the same data is available to each replica.




Using accumulators, many training/validation metrics can be computed
easily and correctly in an elastic distributed setting. For example, a
simple validation step which calculates a loss and accuracy can be
implemented as follows:

accum = Accumulator()  # New accumulator starts in accumulation mode.

for epoch in remaining_epochs_until(60):

    for batch in validloader:
        ...
        accum["loss_sum"] += <loss summed within the batch>
        accum["correct"] += <number of correct predictions>
        accum["total"] += <total number of samples in the batch>

    with accum.synchronized():  # Enter synchronized mode.
        accum["loss_avg"] = accum["loss_sum"] / accum["total"]
        accum["accuracy"] = accum["correct"] / accum["total"]
        print("Loss: {}, Accuracy: {}".format(
              accum["loss_avg"], accum["accuracy"]))
        accum.clear()
    # Back to accumulation mode.






	Parameters

	
	args – Positional arguments same as dict.


	kwargs – Keyword arguments same as dict.









	
__iadd__(other)

	Supports the += operation, e.g. accum += {key1: val1, key2: val2}.
Behaves the same way as accum.update({key1: val1, key2: val2}).


	Parameters

	other – Mapping object or an iterable of key-update pairs.










	
__isub__(other)

	Supports the -= operation, e.g. accum -= {key1: val1, key2: val2}.
Behaves the same way as accum.subtract({key1: val1, key2: val2}).


	Parameters

	other – Mapping object or an iterable of key-update pairs.










	
__getitem__(key)

	Supports indexing, e.g. val = accum[key] and accum[key] += 1.
The former (read access) should only be used when the accumulator is in
synchronized mode.


	Parameters

	other – Key used to access a value in the accumulator.










	
subtract(*args, **kwargs)

	Apply a collection of key-update pairs. Unlike
Accumulator.update(), this method subtracts the updates from
the accumulated values.


	Parameters

	
	args – Positional arguments same as Accumulator.update().


	kwargs – Keyword arguments same as Accumulator.update().













	
synchronized()

	A context manager which can be used to define the code to execute in
synchronized mode. Within the context manager, any code can interact
with this accumulator as if it were a regular Python dict. The
application must ensure that whatever operations performed within this
context block are the same across all replicas.


Warning

Entering this context manager is a distributed synchronization
point! Please ensure that all replicas enter this context manager
at the same point in their code.








	
update(*args, **kwargs)

	Apply a collection of key-update pairs. Unlike dict.update, this
method additively applies the updates to the accumulated values.


	Parameters

	
	args – Positional arguments same as dict.update. Can be a
mapping object or an iterable of key-update pairs.


	kwargs – Keyword arguments same as dict.update. Each keyword is
the string key corresponding to the provided update.

















	
class adaptdl.torch.AdaptiveDataLoader(dataset, batch_size=1, shuffle=False, **kwargs)

	Bases: torch.utils.data.dataloader.DataLoader, adaptdl.torch.data.AdaptiveDataLoaderMixin

This class is a PyTorch DataLoader that also supports adaptive batch sizes
and checkpoint-restart elasticity. Applications can typically use objects
of this class as direct replacements for PyTorch DataLoaders. However, some
notable differences are:


	The batch_size argument defines the target total batch size across
all replicas, rather than the local batch size on each replica.


	Custom sampler and batch_sampler are not supported.


	Iterating through the dataloader is only allowed from within an epoch
loop (see adaptdl.torch.epoch), and only one dataloader loop is
allowed at any given time.





	Parameters

	
	dataset (torch.util.data.Dataset) – Dataset from which to load the data.


	batch_size (int) – The target total batch size across all replicas. The
actual total batch size may be different due to rounding (each
replica must have the same local batch size), or being scaled up
using adaptive batch sizes.


	shuffle (bool) – Whether the data is reshuffled at every epoch.


	**kwargs – Keyword arguments passed to torch.util.data.Dataloader.






	Raises

	ValueError – If sampler or batch_sampler are not None.






	
__iter__()

	Iterate over batches of data. When adaptive batch size is disabled,
stops after the entire dataset has been processed once in total by all
replicas. This means if there are K replicas, then this method will
iterate over ~1/K of the dataset. When adaptive batch size is enabled,
stops after making enough statistical progress roughly equivalent to
one pass over the dataset with non-adaptive batch size. In this case,
the dataset may be processed more than once.

A checkpoint-restart may be triggered in-between each batch. In this
case, the current iteration state will be saved and restored after the
restart, and continue where it left off.










	
class adaptdl.torch.AdaptiveDataParallel(model, optimizer, lr_scheduler=None, mp_scaler=None, scaling_rule: Optional[adaptdl.torch.scaling_rules.ScalingRuleBase] = None, name='adaptdl-dataparallel', **kwargs)

	Bases: torch.nn.parallel.distributed.DistributedDataParallel

This class extends PyTorch DistributedDataParallel with support for
adaptive batch sizes and checkpoint-restart elasticity. It automatically
saves the given model, optimizer, and (optionally) LR scheduler whenever a
checkpoint is triggered, and restores their states after restart. The
optimizer is automatically patched with the chosen scaling rule.


	Parameters

	
	model (torch.nn.Module) – Model to be distributed.


	optimizer (torch.optim.Optimizer) – Optimizer used to update the given


	parameters (model's) – 


	of (will be patched using subclass) – 








:param adaptdl.torch.scaling_rules.ScalingRuleBase.:
:param scaling_rule: Scaling rule used to
:type scaling_rule: ScalingRuleBase
:param patch the given optimizer:
:param default to AdaScale.:
:param lr_scheduler: LR scheduler used
:type lr_scheduler: torch.optim.lr_scheduler._LRScheduler
:param to anneal the learning rate for the given optimizer.:
:param name: Unique name for each instance of this class, needed only
:type name: string
:param if multiple instances exist.:


	
forward(*args, **kwargs)

	




	
property gain

	Current estimate of the AdaScale gain (r_t) value.






	
to_tensorboard(writer, global_step, tag_prefix='')

	Output some useful metrics to TensorBoard.


	Parameters

	
	writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter
object to output metrics to.


	global_step (int) – Global step value to record.


	tag_prefix (str) – Prefix added to each metric’s tag.













	
training: bool

	




	
zero_grad(*args, **kwargs)

	Sets gradients of all model parameters to zero.










	
class adaptdl.torch.ElasticSampler(dataset, shuffle=True)

	Bases: torch.utils.data.sampler.Sampler

A PyTorch Sampler which partitions data samples across multiple replicas,
and supports deterministic continuing across checkpoint-restarts. Shuffling
is deterministic for each epoch, and ElasticSampler.set_epoch()
should be invoked to obtain different orderings in different epochs.


	Parameters

	
	dataset (torch.util.data.Dataset) – The dataset to sample from.


	shuffle (bool) – Whether the data samples should be shuffled.









	
__iter__()

	Iterate through the samples in the dataset, in the order defined for a
set epoch, starting at a set index. Produces only the indices for the
local replica.

Returns: Iterator over data sample indices.






	
__len__()

	The total number of samples to be iterated through, starting at the set
index, for the local replica.

Returns (int): Number of samples.






	
set_epoch(epoch, index=0)

	Set the epoch to derive samples from. Optional argument index can
be specified to start sampling from a particular index, e.g. after a
checkpoint-restart.


	Parameters

	
	epoch (int) – The epoch to sample from.


	index (int) – The index to start sampling from.

















	
adaptdl.torch.current_dataloader()

	Reference to the data loader currently being iterated.

Returns (AdaptiveDataLoaderHelper): Current data loader.






	
adaptdl.torch.current_epoch()

	Get the current epoch while iterating with remaining_epochs_until().


	Returns

	The current epoch number if called from within a
remaining_epochs_until() iteration, None otherwise.



	Return type

	int or None










	
adaptdl.torch.finished_epochs()

	Get the number of epochs finished using remaining_epochs_until().


	Returns

	The number of finished epochs. Equal to current_epoch()
if called from within a remaining_epochs_until() iteration.



	Return type

	int










	
adaptdl.torch.init_process_group(backend, init_method=None, world_size=None, rank=None)

	Initializes the default distributed process group and the AdaptDL
collectives module.


	Parameters

	
	backend (str or Backend) – The backend to use. Use “nccl” for multi-GPU
training else “gloo”.


	init_method (str, optional) – URL specifying how to initialize the
process group.


	world_size (int, optional) – Number of processes participating in
the job


	rank (int, optional) – Rank of the current process (it should be a
number between 0 and world_size-1).








If init_method, world_size and rank is NOT provided, typically in the
Kubernetes environment, AdaptDL will try to infer them through environment
variables ADAPTDL_MASTER_ADDR, ADAPTDL_NUM_REPLICAS and
ADAPTDL_REPLICA_RANK respectively.






	
adaptdl.torch.remaining_epochs_until(epoch)

	Iterate over epochs in a way that is consistent with checkpoint-restarts.
For example:

for epoch in remaining_epochs_until(30):
    print(current_epoch())  # Should print 0 through 29

for epoch in remaining_epochs_until(60):
    print(current_epoch())  # Should print 30 through 59





If a checkpoint-restart happens during an epoch, all previous epochs will
be skipped after the program restarts.


	Parameters

	epoch (int) – The epoch number to end at (exclusively).



	Raises

	RuntimeError – If invoked before a previous epoch loop has ended.










Submodules



	adaptdl.torch.accumulator module

	adaptdl.torch.data module

	adaptdl.torch.epoch module

	adaptdl.torch.gradient_noise_scale module

	adaptdl.torch.iterator module

	adaptdl.torch.parallel module

	adaptdl.torch.scaling_rules module









            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.accumulator module


	
class adaptdl.torch.accumulator.Accumulator(*args, **kwargs)

	Bases: collections.abc.MutableMapping

This class helps aggregate simple statistics across all replicas in the
current job, and across any number of checkpoint-restarts. Can be used to
compute metrics like loss and accuracy, synchronized across each replica.

Accumulators imitate python dictionaries, but with a few key differences
described below. Primarily, its usage and behavior depend on whether it is
set to accumulation mode or to synchronized mode.


	Accumulation mode: the accumulator is being updated on all
replicas. Operations like accum["key"] += val or
accum.update(key=val) will aggregate the updates locally on each
replica, which are lazily synchronized in the background (either upon a
checkpoint or a switch to synchronized mode). Each replica may make
different updates, which are summed together when synchronized. While
accumulation mode is enabled, all read operations on the accumulator
will behave as if they were performed on an empty dict, ie.
len(accum) will always return 0. By default, all accumulators
are set to accumulation mode.


	Synchronized mode: the accumulator contains the same data on every
replica, and the application must ensure that all write operations are
exactly the same across all replicas. While in synchronized mode, the
accumulator may be used as if it were a native python dict, and all
read/write operations are supported. Accumulator.synchronized()
may be used to enter synchronized mode. Upon entering synchronized
mode, the accumulator will automatically sum all updates from all
replicas to ensure the same data is available to each replica.




Using accumulators, many training/validation metrics can be computed
easily and correctly in an elastic distributed setting. For example, a
simple validation step which calculates a loss and accuracy can be
implemented as follows:

accum = Accumulator()  # New accumulator starts in accumulation mode.

for epoch in remaining_epochs_until(60):

    for batch in validloader:
        ...
        accum["loss_sum"] += <loss summed within the batch>
        accum["correct"] += <number of correct predictions>
        accum["total"] += <total number of samples in the batch>

    with accum.synchronized():  # Enter synchronized mode.
        accum["loss_avg"] = accum["loss_sum"] / accum["total"]
        accum["accuracy"] = accum["correct"] / accum["total"]
        print("Loss: {}, Accuracy: {}".format(
              accum["loss_avg"], accum["accuracy"]))
        accum.clear()
    # Back to accumulation mode.






	Parameters

	
	args – Positional arguments same as dict.


	kwargs – Keyword arguments same as dict.









	
__iadd__(other)

	Supports the += operation, e.g. accum += {key1: val1, key2: val2}.
Behaves the same way as accum.update({key1: val1, key2: val2}).


	Parameters

	other – Mapping object or an iterable of key-update pairs.










	
__isub__(other)

	Supports the -= operation, e.g. accum -= {key1: val1, key2: val2}.
Behaves the same way as accum.subtract({key1: val1, key2: val2}).


	Parameters

	other – Mapping object or an iterable of key-update pairs.










	
__getitem__(key)

	Supports indexing, e.g. val = accum[key] and accum[key] += 1.
The former (read access) should only be used when the accumulator is in
synchronized mode.


	Parameters

	other – Key used to access a value in the accumulator.










	
subtract(*args, **kwargs)

	Apply a collection of key-update pairs. Unlike
Accumulator.update(), this method subtracts the updates from
the accumulated values.


	Parameters

	
	args – Positional arguments same as Accumulator.update().


	kwargs – Keyword arguments same as Accumulator.update().













	
synchronized()

	A context manager which can be used to define the code to execute in
synchronized mode. Within the context manager, any code can interact
with this accumulator as if it were a regular Python dict. The
application must ensure that whatever operations performed within this
context block are the same across all replicas.


Warning

Entering this context manager is a distributed synchronization
point! Please ensure that all replicas enter this context manager
at the same point in their code.








	
update(*args, **kwargs)

	Apply a collection of key-update pairs. Unlike dict.update, this
method additively applies the updates to the accumulated values.


	Parameters

	
	args – Positional arguments same as dict.update. Can be a
mapping object or an iterable of key-update pairs.


	kwargs – Keyword arguments same as dict.update. Each keyword is
the string key corresponding to the provided update.



















            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.data module


	
class adaptdl.torch.data.AdaptiveDataLoader(dataset, batch_size=1, shuffle=False, **kwargs)

	Bases: torch.utils.data.dataloader.DataLoader, adaptdl.torch.data.AdaptiveDataLoaderMixin

This class is a PyTorch DataLoader that also supports adaptive batch sizes
and checkpoint-restart elasticity. Applications can typically use objects
of this class as direct replacements for PyTorch DataLoaders. However, some
notable differences are:


	The batch_size argument defines the target total batch size across
all replicas, rather than the local batch size on each replica.


	Custom sampler and batch_sampler are not supported.


	Iterating through the dataloader is only allowed from within an epoch
loop (see adaptdl.torch.epoch), and only one dataloader loop is
allowed at any given time.





	Parameters

	
	dataset (torch.util.data.Dataset) – Dataset from which to load the data.


	batch_size (int) – The target total batch size across all replicas. The
actual total batch size may be different due to rounding (each
replica must have the same local batch size), or being scaled up
using adaptive batch sizes.


	shuffle (bool) – Whether the data is reshuffled at every epoch.


	**kwargs – Keyword arguments passed to torch.util.data.Dataloader.






	Raises

	ValueError – If sampler or batch_sampler are not None.






	
__iter__()

	Iterate over batches of data. When adaptive batch size is disabled,
stops after the entire dataset has been processed once in total by all
replicas. This means if there are K replicas, then this method will
iterate over ~1/K of the dataset. When adaptive batch size is enabled,
stops after making enough statistical progress roughly equivalent to
one pass over the dataset with non-adaptive batch size. In this case,
the dataset may be processed more than once.

A checkpoint-restart may be triggered in-between each batch. In this
case, the current iteration state will be saved and restored after the
restart, and continue where it left off.










	
class adaptdl.torch.data.AdaptiveDataLoaderHelper(batch_size=1)

	Bases: object

This class provides fine-grained control over adaptive training loops. It
can be used for building more user-friendly custom data loaders, such as
AdaptiveDataLoader.


	Parameters

	batch_size (int) – The target total batch size across all replicas. The
actual total batch size may be different due to rounding (each
replica must have the same local batch size), or being scaled up
using adaptive batch sizes.






	
property accumulation_steps

	The number of batches returned by the dataloader before a
step is taken.






	
autoscale_batch_size(max_batch_size, local_bsz_bounds=None, gradient_accumulation=False)

	Enables adaptive batch size. Should be invoked once after the data
loader object is created.


	Parameters

	
	max_batch_size (int) – Maximum total batch size allowed.


	local_bsz_bounds (tuple) – A pair of (min_local_bsz, max_local_bsz),
the min and max local batch sizes allowed on each replica.






	Raises

	ValueError – If any of the provided batch size bounds are invalid.










	
context()

	All iterators should be iterated under this context. It ensures
proper cleanup of elastic context at the end of each epoch.






	
property current_batch_size

	




	
property current_index

	The total number of data samples processed so far in the current loop.
Includes the data processed by all replicas. None if this data
loader is not currently being iterated.






	
property current_local_bsz

	The current logical local batch size used by the dataloader.
The batch size returned by the dataloader may be smaller if
gradient accumulation is used






	
property end_index

	(Optional) Can be used to track the end index of dataset across
restarts.






	
is_accum_step()

	Whether the current step’s gradient will be accumulated.






	
is_optim_step()

	Whether the optimizer step will be invoked in this step.






	
property local_bsz_bounds

	The local batch size bounds on each replica. A pair of integers,
(min_local_bsz, max_local_bsz).






	
property max_batch_size

	The maximum total batch size allowed for adaptive batch size. None
if adaptive batch size is disabled.






	
profile(commit)

	Every iteration of every epoch should be profiled under this context.
Note that, custom DataLoader writers should make sure that it gets
called equal number of times on each replica.


	Parameters

	commit (bool) – Whether to commit the profiled results.










	
skipdone()

	Should be called just after entering the _elastic context to make
sure that the dataloader loop is not replayed if has already finished
before a restart.






	
to_tensorboard(writer, global_step, tag_prefix='')

	Output some useful metrics to TensorBoard.


	Parameters

	
	writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter
object to output metrics to.


	global_step (int) – Global step value to record.


	tag_prefix (str) – Prefix added to each metric’s tag.













	
train()

	Set this data loader to be the one used for training. Only one data
loader may be used for training.






	
property training

	








	
class adaptdl.torch.data.AdaptiveDataLoaderMixin(batch_size)

	Bases: object

This class provides elastic functionality to any custom DataLoader which
inherits it. It defines a member _elastic of type
AdaptiveDataLoaderHelper which has useful methods and members to
implement restart-safe, elastic DataLoaders. It also exposes public methods
which can be used inside training loops directly from
AdaptiveDataLoader.


	
property accumulation_steps

	The number of batches returned by the dataloader before a
step is taken.






	
autoscale_batch_size(max_batch_size, local_bsz_bounds=None, gradient_accumulation=False)

	




	
property current_batch_size

	




	
property current_local_bsz

	




	
to_tensorboard(writer, global_step, tag_prefix='')

	Output some useful metrics to TensorBoard.


	Parameters

	
	writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter
object to output metrics to.


	global_step (int) – Global step value to record.


	tag_prefix (str) – Prefix added to each metric’s tag.













	
property training

	








	
class adaptdl.torch.data.ElasticSampler(dataset, shuffle=True)

	Bases: torch.utils.data.sampler.Sampler

A PyTorch Sampler which partitions data samples across multiple replicas,
and supports deterministic continuing across checkpoint-restarts. Shuffling
is deterministic for each epoch, and ElasticSampler.set_epoch()
should be invoked to obtain different orderings in different epochs.


	Parameters

	
	dataset (torch.util.data.Dataset) – The dataset to sample from.


	shuffle (bool) – Whether the data samples should be shuffled.









	
__iter__()

	Iterate through the samples in the dataset, in the order defined for a
set epoch, starting at a set index. Produces only the indices for the
local replica.

Returns: Iterator over data sample indices.






	
__len__()

	The total number of samples to be iterated through, starting at the set
index, for the local replica.

Returns (int): Number of samples.






	
set_epoch(epoch, index=0)

	Set the epoch to derive samples from. Optional argument index can
be specified to start sampling from a particular index, e.g. after a
checkpoint-restart.


	Parameters

	
	epoch (int) – The epoch to sample from.


	index (int) – The index to start sampling from.

















	
adaptdl.torch.data.current_dataloader()

	Reference to the data loader currently being iterated.

Returns (AdaptiveDataLoaderHelper): Current data loader.








            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.epoch module

This module provides tools for the top-level loop over epochs during training.
AdaptDL expects the training program to be implemented as loop over several
epochs, each containing a series of loops over datasets (e.g. one loop over the
training set followed by one loop over the validation set). The program can be
interrupted between every iteration of any dataset loop, trigger a checkpoint
to be taken, and restarted using a different set of replicas.

Due to checkpoint-restarts, parts of the training program may be executed
multiple times (e.g. once after each restart)! To avoid incorrect execution,
ensure that your code is idempotent [https://stackoverflow.com/a/1077421] in the following locations:


	Immediately before any epoch loop (using remaining_epochs_until()).


	Immediately before any dataset loop (using
adaptdl.torch.data.AdaptiveDataLoader).




Your code may be non-idempotent in other locations.

### IDEMPOTENT CODE ONLY ###

for epoch in remaining_epochs_until(30):

    ### IDEMPOTENT CODE ONLY ###

    for batch in train_loader:
        # ... any code ...

    ### IDEMPOTENT CODE ONLY ###

    for batch in valid_loader:
        # ... any code ...

    # ... any code ...

# ... any code ...

### END PROGRAM ###





For example, a common non-idempotent operation is learning-rate annealing:

for epoch in remaining_epochs_until(30):

    lr_scheduler.step()  # (A) WRONG!

    for batch in train_loader:
        # ...

    lr_scheduler.step()  # (B) WRONG!

    for batch in valid_loader:
        # ...

    lr_scheduler.step()  # (C) OK!





Location (A) will be executed again after any checkpoint-restart during either
the training or validation loop, resulting in the learning rate being annealed
several times in one epoch! Similarly with location (B), if checkpoint-restart
happens during the validation loop.

Location (C) results in the correct behavior, because (1) an epoch will not be
repeated once it has finished, and (2) no checkpoint-restarts can occur between
the learning rate annealing and the end of the epoch.


	
adaptdl.torch.epoch.current_epoch()

	Get the current epoch while iterating with remaining_epochs_until().


	Returns

	The current epoch number if called from within a
remaining_epochs_until() iteration, None otherwise.



	Return type

	int or None










	
adaptdl.torch.epoch.finished_epochs()

	Get the number of epochs finished using remaining_epochs_until().


	Returns

	The number of finished epochs. Equal to current_epoch()
if called from within a remaining_epochs_until() iteration.



	Return type

	int










	
adaptdl.torch.epoch.remaining_epochs_until(epoch)

	Iterate over epochs in a way that is consistent with checkpoint-restarts.
For example:

for epoch in remaining_epochs_until(30):
    print(current_epoch())  # Should print 0 through 29

for epoch in remaining_epochs_until(60):
    print(current_epoch())  # Should print 30 through 59





If a checkpoint-restart happens during an epoch, all previous epochs will
be skipped after the program restarts.


	Parameters

	epoch (int) – The epoch number to end at (exclusively).



	Raises

	RuntimeError – If invoked before a previous epoch loop has ended.












            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.gradient_noise_scale module


	
class adaptdl.torch.gradient_noise_scale.GradientNoiseScale(adp, optimizer, mp_scaler=None, num_replicas=None, accum_scale=None)

	Bases: object

This class tracks gradient related stats and takes care of gradient
accumulation.


	
property accum_count

	




	
property accum_scale

	




	
gain(scale)

	Current estimate of the GradientNoiseScale gain ratio.


	Parameters

	scale (float) – The total scale to estimate the gain ratio for.





Returns (float): Estimate of gain ratio.






	
get_progress()

	




	
property raw_sqr_avg

	




	
property raw_var_avg

	




	
reset_accumulation()

	reset accumulation calculations and gradients.






	
set_accum_scale(accum_scale)

	




	
set_progress(progress)

	




	
property should_zero_grad

	




	
sqr_avg()

	Current estimate of the squared l2-norm of the true gradient (sigma
squared).

Returns (float): Estimate of squared l2-norm.






	
var_avg()

	Current estimate of the trace of the covariance of the true gradient
(mu squared).

Returns (float): Estimate of trace of the covariance.












            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.iterator module


	
class adaptdl.torch.iterator.AdaptiveBPTTIterator(dataset, batch_size, bptt_len, **kwargs)

	Bases: torchtext.data.iterator.BPTTIterator, adaptdl.torch.data.AdaptiveDataLoaderMixin








            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.parallel module


	
class adaptdl.torch.parallel.AdaptiveDataParallel(model, optimizer, lr_scheduler=None, mp_scaler=None, scaling_rule: Optional[adaptdl.torch.scaling_rules.ScalingRuleBase] = None, name='adaptdl-dataparallel', **kwargs)

	Bases: torch.nn.parallel.distributed.DistributedDataParallel

This class extends PyTorch DistributedDataParallel with support for
adaptive batch sizes and checkpoint-restart elasticity. It automatically
saves the given model, optimizer, and (optionally) LR scheduler whenever a
checkpoint is triggered, and restores their states after restart. The
optimizer is automatically patched with the chosen scaling rule.


	Parameters

	
	model (torch.nn.Module) – Model to be distributed.


	optimizer (torch.optim.Optimizer) – Optimizer used to update the given


	parameters (model's) – 


	of (will be patched using subclass) – 








:param adaptdl.torch.scaling_rules.ScalingRuleBase.:
:param scaling_rule: Scaling rule used to
:type scaling_rule: ScalingRuleBase
:param patch the given optimizer:
:param default to AdaScale.:
:param lr_scheduler: LR scheduler used
:type lr_scheduler: torch.optim.lr_scheduler._LRScheduler
:param to anneal the learning rate for the given optimizer.:
:param name: Unique name for each instance of this class, needed only
:type name: string
:param if multiple instances exist.:


	
forward(*args, **kwargs)

	




	
property gain

	Current estimate of the AdaScale gain (r_t) value.






	
to_tensorboard(writer, global_step, tag_prefix='')

	Output some useful metrics to TensorBoard.


	Parameters

	
	writer (torch.utils.tensorboard.SummaryWriter) – SummaryWriter
object to output metrics to.


	global_step (int) – Global step value to record.


	tag_prefix (str) – Prefix added to each metric’s tag.













	
training: bool

	




	
zero_grad(*args, **kwargs)

	Sets gradients of all model parameters to zero.












            

          

      

      

    

  

    
      
          
            
  
adaptdl.torch.scaling_rules module


	
class adaptdl.torch.scaling_rules.AdaScale

	Bases: adaptdl.torch.scaling_rules.ScalingRuleBase

Implements the AdaScale [https://proceedings.icml.cc/static/paper_files/icml/2020/4682-Supplemental.pdf] algorithm for scaling the learning rate for
distributed and large batch size training.


	
scale_lr(scale)

	Calculate factors to be applied to lr for each parameter group.










	
class adaptdl.torch.scaling_rules.LEGWScale(base_warmup_epochs, data_size)

	Bases: adaptdl.torch.scaling_rules.ScalingRuleBase

Implements the LEGWScale algorithm for scaling the learning rate.

Essentially, with LEGWScale, lr_factor is calculated based on
training progress as follows:
- when current_step < base_warmup_epoch * scale * steps_per_epoch:


lr_factor = sqrt(scale) * progress_ratio where
`progress_ratio = current_step /


(scale * base_warmup_epochs * steps_per_epoch)`








	when current_step >= base_warmup_epoch * scale * steps_per_epoch:
lr_factor = sqrt(scale)




In order to adapt LEGWScale to AdaptDL, progress_ratio is
calculated differently as:
progress / (scale * base_warmup_epochs * steps_per_epoch) where
progress is the effective steps trained based on AdaptDL’s
estimation.


	Argmuents:
	base_warmup_epochs: Base warmup epochs
data_size: total number of samples in the dataset






	
scale_lr(scale)

	








	
class adaptdl.torch.scaling_rules.LinearScale

	Bases: adaptdl.torch.scaling_rules.ScalingRuleBase


	
scale_lr(scale)

	








	
class adaptdl.torch.scaling_rules.ScalingRuleBase

	Bases: object

Base class for scaling rules that has the ability to track gradient noise
scale calculations. Its subclasses can be used in combination with
adaptdl.torch.parallel.AdaptiveDataParallel and torch.optim.SGD.

optim = torch.optim.SGD(model, lr=0.001)
adascale = AdaScale()
model = AdaptiveDataParallel(model, optim, adascale)

for epoch in ...:
    for batch in ...:
        optim.zero_grad()
        loss = ...
        loss.backward()
        adascale.step()






	
initialize(adp, optimizer, patch_optimizer=False)

	




	
scale_lr(scale)

	




	
step(*args, **kwargs)

	Run one optimizer step. Essentially just invokes
optimizer.step(*args, **kwargs) with a scaled learning rate.


	Parameters

	
	args – Positional arguments passed to optimizer.step.


	kwargs – Keyword arguments passed to optimizer.step.













	
zero_grad(*args, **kwargs)

	








	
class adaptdl.torch.scaling_rules.SqrtScale

	Bases: adaptdl.torch.scaling_rules.ScalingRuleBase


	
scale_lr(scale)

	










            

          

      

      

    

  

    
      
          
            
  
adaptdl.checkpoint module

This module provides functionality to Save and load arbitrary state as part of
checkpoint-restart elasticity. The State class can be subclassed to define
how to save/load any state to/from persistent storage, so it can be restored
after the current job restarts and resumed from where it left off.


	
class adaptdl.checkpoint.State(name)

	Bases: object

This class implements An arbitrary piece of state which can be saved and
loaded as part of a checkpoint, and synchronized across all replicas.
Should be sub-classed to define custom save, load, and sync logic.


	
load(fileobj)

	This method should be overridden by subclasses to define how the state
is loaded. Is invoked by load_state to load the state from persistent
storage.


	Parameters

	fileobj (BinaryIO) – A binary readable file object.










	
save(fileobj)

	This method should be overridden by subclasses to define how the state
is saved. Is invoked by save_all_states and save_state to save the
state into persistent storage.


	Parameters

	fileobj (BinaryIO) – A binary writable file object.










	
sync()

	This method should be overridden by subclasses to define how the state
is synchronized across replicas. This might be necessary to make sure
the state is consistent before saving it to persistent storage. Is
invoked by save_state before saving the state.










	
adaptdl.checkpoint.load_state(state)

	Load the given State object from persistent storage. If the object was
previously saved, then State.load will be invoked with a readable file
object to load from.


	Parameters

	state (State) – State object to load from persistent storage.



	Returns

	True if state was previously saved and State.load was invoked,
False otherwise.










	
adaptdl.checkpoint.save_all_states()

	Invokes save_state on all State objects for which State.skip is True.
This function can be used to trigger a global checkpoint and save every
State in the current job.






	
adaptdl.checkpoint.save_state(state, checkpoint_dir, sync=True)

	Saves a State object to persistent storage. First invokes State.sync on
all replicas if sync is True (default), and then invokes State.save
on the replica of rank 0 only. Note that we save state to a temporary
folder first. Then, it will be renamed to the formal checkpoint folder
after all states are saved.


	Parameters

	
	state (State) – The State object to save to persistent storage.


	sync (bool) – Whether State.sync should be invoked.















            

          

      

      

    

  

    
      
          
            
  
adaptdl.collective module

This module contains simple collective communications primitives which operate
on arbitrary python objects. It is meant to be general but non-performant.
Only use these primitives if you are synchronizing small objects which can be
efficiently pickled and operated on. For larger objects, use framework-specific
functions, such as those provided by torch.distributed.

The functions in this module should be invoked in the same order across all
replicas in the current job. Otherwise, their behavior is undefined and you may
encounter unexpected bugs and errors.


	
adaptdl.collective.allreduce(value, reduce_fn=<function default_reduce_fn>)

	Reduces a value across all replicas in such a way that they all get the
final result. Blocks until this function is invoked by all replicas.


	Parameters

	
	value (object) – The object which will be reduced together with all
other replicas.


	reduce_fn (Function) – A reduction function which two objects as
arguments, and returns the resulting reduced object.






	Returns

	Resulting value after being reduced across all replicas.



	Return type

	object



	Raises

	RuntimeError – If this module has not been initialized.










	
adaptdl.collective.allreduce_async(value, reduce_fn=<function default_reduce_fn>)

	Asynchronous version of the allreduce function. Does not block, instead
returns a future which can be used to obtain the result later.


	Parameters

	
	value (object) – The object which will be reduced together with all
other replicas.


	reduce_fn (Function) – A reduction function which two objects as
arguments, and returns the resulting reduced object.






	Returns

	Object from which the result can be obtained later.



	Return type

	Future



	Raises

	RuntimeError – If this module has not been initialized.










	
adaptdl.collective.broadcast(value)

	Broadcasts a value from the replica of rank 0 to all replicas. Blocks until
this function is invoked by all replicas.


	Parameters

	value (object) – The object which will be broadcasted from replica 0.
Ignored on all other replicas.



	Returns

	The value broadcasted from replica 0.



	Return type

	object



	Raises

	RuntimeError – If this module has not been initialized.










	
adaptdl.collective.initialize(master_addr=None, master_port=None, replica_rank=None, num_replicas=None)

	Initialize this module, must be invoked before calling any other functions.
This function will block until it has been invoked from all replicas.


	Parameters

	
	master_addr – address of the replica with rank 0.


	master_port – free port of the replica with rank 0.


	replica_rank – rank of the current replica.


	num_replicas – total number of replicas.






	Raises

	RuntimeError – If this module had already been initialized.










	
adaptdl.collective.teardown()

	Teardown this module, will block until this function has been invoked from
all replicas.


	Raises

	RuntimeError – If this module has not been initialized.












            

          

      

      

    

  

    
      
          
            
  
adaptdl.env module

This module contains functions for retrieving the values of AdaptDL
environment variables, or their defaults if unset.


	
adaptdl.env.adaptdl_sched_version()

	A string which gives the AdaptDL version of scheduler. Determined
by the environment variable ADAPTDL_SCHED_VERSION or None


	Returns

	AdaptDL version of scheduler, or None.



	Return type

	str










	
adaptdl.env.checkpoint_path()

	Path to the directory used for saving and loading checkpoints. Determined
by the environment variable ADAPTDL_CHECKPOINT_PATH, or None if
unset. Setting this environment variable is required for checkpointing, and
is automatically set in AdaptDL-scheduled clusters.


	Returns

	checkpoint path or None.



	Return type

	str










	
adaptdl.env.from_ray()

	Returns True if the code is being called from Ray






	
adaptdl.env.job_id()

	A string which uniquely identifies the current job in an AdaptDL-scheduled
cluster. None if running standalone.


	Returns

	unique job identifier or None.



	Return type

	str










	
adaptdl.env.master_addr()

	Network address of the rank 0 replica, required for distributed training.
Determined by the environment variable ADAPTDL_MASTER_ADDR, or
0.0.0.0 if unset.

In AdaptDL-scheduled clusters, this environment variable is unset. The rank
0 replica is discovered dynamically by querying the supervisor
(supervisor_url()).


	Returns

	address of the rank 0 replica, or 0.0.0.0.



	Return type

	str










	
adaptdl.env.master_port()

	Available port for the rank 0 replica, required for distributed training.
Determined by the environment variable ADAPTDL_MASTER_PORT, or 0 if
unset. Automatically set in AdaptDL-scheduled clusters.


	Returns

	available port for the rank 0 replica, or 0.



	Return type

	int










	
adaptdl.env.num_nodes()

	Number of unique nodes being used for the current job. For example, if
there are 4 nodes, each running 2 replicas, then this function returns 4.
Determined by the environment variable ADAPTDL_NUM_NODES, or is equal
to num_replicas() if unset. Thus, this environment variable only
needs to be set if some node runs multiple replicas. Automatically set in
AdaptDL-scheduled clusters.


	Returns

	number of unique nodes, or the value of num_replicas().



	Return type

	int










	
adaptdl.env.num_replicas()

	Total number of replicas, required for distributed training. For example,
if there are 4 nodes, each running 2 replicas, then this function returns
8. Determined by the environment variable ADAPTDL_NUM_REPLICAS, or 1 if
unset. Automatically set in AdaptDL-scheduled clusters.


	Returns

	total number of replicas, or 1.



	Return type

	int










	
adaptdl.env.num_restarts()

	Number of times the current job was restarted. Determined by the
environment variable ADAPTDL_NUM_RESTARTS, or 0 if unset. This value is
mainly informational, and is automatically set in AdaptDL-scheduled
clusters.


	Returns

	number of restarts, or 0.



	Return type

	int










	
adaptdl.env.replica_rank()

	Rank of the current replica, required for distributed training. Each
replica is assigned a unique rank from 0 to K-1, where K is the total
number of replicas. Determined by the environment variable
ADAPTDL_REPLICA_RANK, or 0 if unset. Automatically set in
AdaptDL-scheduled clusters.


	Returns

	rank of the current replica, or 0.



	Return type

	int










	
adaptdl.env.share_path()

	Path to a directory shared by all AdaptDL job replicas, which can be used
by the application, e.g. for storing downloaded datasets or artifacts.
Determined by the environment variable ADAPTDL_SHARE_PATH, or None
if unset. Automatically set in AdaptDL-scheduled clusters.


	Returns

	shared directory path or None.



	Return type

	str










	
adaptdl.env.supervisor_url()

	URL of the supervisor in an AdaptDL-scheduled cluster. The address of the
rank 0 replica is dynamically discovered via the supervisor, instead of via
the ADAPTDL_MASTER_ADDR environment variable.


	Returns

	URL of the supervisor, or None.



	Return type

	str












            

          

      

      

    

  

    
      
          
            
  
adaptdl.goodput module


	
class adaptdl.goodput.GoodputFunction(perf_params, grad_params, init_batch_size)

	Bases: object


	
efficiency(batch_size)

	




	
evaluate(num_nodes, num_replicas, atomic_bsz, accum_steps)

	




	
optimize(num_nodes, num_replicas, max_batch_size=None, atomic_bsz_range=None, accumulation=False)

	




	
throughput(num_nodes, num_replicas, atomic_bsz, accum_steps)

	








	
class adaptdl.goodput.GradParams(sqr, var)

	Bases: tuple


	
property sqr

	Alias for field number 0






	
property var

	Alias for field number 1










	
class adaptdl.goodput.PerfParams(alpha_c, beta_c, alpha_n, beta_n, alpha_r, beta_r, gamma)

	Bases: tuple


	
property alpha_c

	Alias for field number 0






	
property alpha_n

	Alias for field number 2






	
property alpha_r

	Alias for field number 4






	
property beta_c

	Alias for field number 1






	
property beta_n

	Alias for field number 3






	
property beta_r

	Alias for field number 5






	
property gamma

	Alias for field number 6










	
adaptdl.goodput.fit_perf_params(num_nodes, num_replicas, atomic_bsz, accum_step_time, optim_step_time)

	






            

          

      

      

    

  

    
      
          
            
  
adaptdl.reducer module


	
class adaptdl.reducer.Future(reducer, key)

	Bases: object


	
result()

	








	
class adaptdl.reducer.Reducer(rank, replicas, root_host, root_port)

	Bases: object

Simple asynchronous (all)reduce operations on python objects. Assumes all
invokations to allreduce, allreduce_async, and Future.result happen in the
same order across all processes.


	
allreduce(obj, reduce_fn=<function default_reduce_fn>)

	




	
allreduce_async(obj, reduce_fn=<function default_reduce_fn>)

	




	
broadcast(obj)

	Broadcast a value from replica 0 to all other replicas. Currently uses
allreduce with left-projection.










	
adaptdl.reducer.default_reduce_fn(a, b)

	






            

          

      

      

    

  

    
      
          
            
  
adaptdl.sched_hints module


	
adaptdl.sched_hints.post_sched_hints(sched_hints, job_key)

	






            

          

      

      

    

  

    
      
          
            
  
adaptdl.utils module


	
adaptdl.utils.print_exc(function)

	A decorator that wraps the passed in function and prints any exceptions.
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Introduction

Documentation [https://adaptdl.readthedocs.org] |
Examples [https://github.com/petuum/adaptdl/tree/master/examples] |
CASL Project [https://www.casl-project.ai]

AdaptDL is a resource-adaptive deep learning (DL) training and scheduling
framework, and is part of the CASL open source project [https://www.casl-project.ai]. The goal of AdaptDL is to make distributed DL
easy and efficient in dynamic-resource environments such as shared clusters and
the cloud.

AdaptDL consists of two components which can be used together with or separately
from one another:


	adaptdl-sched: A cluster scheduler on Kubernetes optimized for distributed
deep learning training.


	adaptdl: A library for adaptive batch sizes that can efficiently scale
distributed training to many nodes.




Some core features offered by AdaptDL are:


	Elastically schedule distributed DL training jobs in shared clusters.


	Cost-aware resource auto-scaling in cloud computing environments (e.g. AWS).


	Automatic batch size and learning rate scaling for distributed training.




AdaptDL supports PyTorch training programs. TensorFlow support coming soon!



Why AdaptDL?


Efficient Resource Management

The AdaptDL scheduler directly optimizes cluster-wide training performance and
resource utilization, by using a genetic algorithm to periodically optimize
resource allocations for all jobs. Through elastic re-scaling, co-adapting
batch sizes and learning rates, and avoiding network interference, AdaptDL
significantly accelerates shared-cluster training when compared with alternative
schedulers. For details, please see our OSDI’21 research paper [https://www.usenix.org/conference/osdi21/presentation/qiao].

[image: _images/scheduling-performance.png]
In the cloud (e.g. AWS), AdaptDL auto-scales the size of the cluster based on
how well those cluster resources are utilized. AdaptDL automatically
provisions spot instances when available to reduce cost by up to 80%.



Adaptive Batch Size Scaling

Efficient distributed training requires careful selection of the batch size and
learning rate, which can be tricky to find manually. AdaptDL offers automatic
batch size and learning rate scaling, which enables efficient distributed
training without requiring manual effort. To achieve this, AdaptDL measures the
system performance and gradient noise scale [https://arxiv.org/pdf/1812.06162.pdf]
during training, adaptively selects the most efficient batch size, and scales
the learning rate using AdaScale [https://arxiv.org/pdf/2007.05105.pdf].

[image: _images/autobsz-performance.png]


Easy-to-use Elastic API

Making training programs run elastically can be challenging and error-prone.
AdaptDL offers APIs which make it easy to enable elasticity for data-parallel
PyTorch programs. Simply change a few lines of code, without heavy refactoring!

BEFORE:

torch.distributed.init_process_group("nccl")
model = torch.nn.parallel.DistributedDataParallel(model)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=128)
for epoch in range(100):
    ...





AFTER:

adaptdl.torch.init_process_group("nccl")
model = adaptdl.torch.AdaptiveDataParallel(model, optimizer)
dataloader = adaptdl.torch.AdaptiveDataLoader(dataset, batch_size=128)
for epoch in adaptdl.torch.remaining_epochs_until(100):
    ...








Getting Started

AdaptDL consists of a Kubernetes job scheduler and an adaptive training
library. They can be used in two ways:


	Scheduling multiple training jobs on a shared cluster or the cloud
(Scheduler Installation [https://adaptdl.readthedocs.io/en/latest/installation/index.html]).


	Adapting the batch size and learning rate for a single training job
(Standalone Training [https://adaptdl.readthedocs.io/en/latest/standalone-training.html]).
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